Initial Moving Mechanism of Densely-Packed Particles Driven by a Planar Shock Wave

The initial moving mechanism of densely packed particles driven by shock waves is unclear but vital for the next accurate calculation of the problem. Here, the initial motion details are investigated experimentally and numerically. We found that before particles show notable motion, shock waves comp...

Full description

Saved in:
Bibliographic Details
Main Authors: Hua Lv, Zhongqi Wang, Yunming Zhang, Jianping Li
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/8867615
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The initial moving mechanism of densely packed particles driven by shock waves is unclear but vital for the next accurate calculation of the problem. Here, the initial motion details are investigated experimentally and numerically. We found that before particles show notable motion, shock waves complete reflection and transmission, and stress waves propagate downstream on particle skeleton. Due to the particle stress wave, particles successively accelerate and obtain an axial velocity of 6–8 m/s. Then, the blocked gas pushes the upstream particles integrally to move downstream, while the gas flow in the pores drags the downstream particles to separate dramatically and accelerate to the velocity of 60–70 m/s. This gas push-drag dual mechanism transforms densely packed particles into a dense gas-particle cloud, which behaves as the expansion phenomena of the dense particles.
ISSN:1070-9622
1875-9203