Singular Cauchy Problem for a Nonlinear Fractional Differential Equation
The paper studies a nonlinear equation including both fractional and ordinary derivatives. The singular Cauchy problem is considered. The theorem of the existence of uniqueness of a solution in the neighborhood of a fixed singular point of algebraic type is proved. An analytical approximate solution...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-11-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/12/22/3629 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The paper studies a nonlinear equation including both fractional and ordinary derivatives. The singular Cauchy problem is considered. The theorem of the existence of uniqueness of a solution in the neighborhood of a fixed singular point of algebraic type is proved. An analytical approximate solution is built, an a priori estimate is obtained. A formula for calculating the area where the proven theorem works is obtained. The theoretical results are confirmed by a numerical experiment in both digital and graphical versions. The technology of optimizing an a priori error using an a posteriori error is demonstrated. |
|---|---|
| ISSN: | 2227-7390 |