The Electric Current Effect on Electrochemical Deconsolidation of Spherical Fuel Elements

For High-Temperature Gas-Cooled Reactor in China, fuel particles are bonded into spherical fuel elements by a carbonaceous matrix. For the study of fuel failure mechanism from individual fuel particles, an electrochemical deconsolidation apparatus was developed in this study to separate the particle...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaotong Chen, Zhenming Lu, Hongsheng Zhao, Bing Liu, Junguo Zhu, Chunhe Tang
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Science and Technology of Nuclear Installations
Online Access:http://dx.doi.org/10.1155/2017/2126876
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For High-Temperature Gas-Cooled Reactor in China, fuel particles are bonded into spherical fuel elements by a carbonaceous matrix. For the study of fuel failure mechanism from individual fuel particles, an electrochemical deconsolidation apparatus was developed in this study to separate the particles from the carbonaceous matrix by disintegrating the matrix into fine graphite powder. The deconsolidated graphite powder and free particles were characterized by elemental analysis, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and ceramography. The results showed that the morphology, size distribution, and element content of deconsolidated graphite matrix and free particles were notably affected by electric current intensity. The electrochemical deconsolidation mechanism of spherical fuel element was also discussed.
ISSN:1687-6075
1687-6083