Laser SLAM Matching Localization Method for Subway Tunnel Point Clouds

When facing geometrically similar environments such as subway tunnels, Scan-Map registration is highly dependent on the correct initial value of the pose, otherwise mismatching is prone to occur, which limits the application of SLAM (Simultaneous Localization and Mapping) in tunnels. We propose a no...

Full description

Saved in:
Bibliographic Details
Main Authors: Yi Zhang, Feiyang Dong, Qihao Sun, Weiwei Song
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/12/3681
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When facing geometrically similar environments such as subway tunnels, Scan-Map registration is highly dependent on the correct initial value of the pose, otherwise mismatching is prone to occur, which limits the application of SLAM (Simultaneous Localization and Mapping) in tunnels. We propose a novel coarse-to-fine registration strategy that includes geometric feature extraction and a keyframe-based pose optimization model. The method involves initial feature point set acquisition through point distance calculations, followed by the extraction of line and plane features, and convex hull features based on the normal vector’s change rate. Coarse registration is achieved through rotation and translation using three types of feature sets, with the resulting pose serving as the initial value for fine registration via Point-Plane ICP. The algorithm’s accuracy and efficiency are validated using Innovusion lidar scans of a subway tunnel, achieving a single-frame point cloud registration accuracy of 3 cm within 0.7 s, significantly improving upon traditional registration algorithms. The study concludes that the proposed method effectively enhances SLAM’s applicability in challenging tunnel environments, ensuring high registration accuracy and efficiency.
ISSN:1424-8220