Error investigation of finite element approximation for a nonlinear Sturm–Liouville problem

A positive definite differential eigenvalue problem with coefficients depending nonlinearly on the spectral parameter has been studied. The differential eigenvalue problem is formulated as a variational eigenvalue problem in a Hilbert space with bilinear forms nonlinearly depending on the spectral p...

Full description

Saved in:
Bibliographic Details
Main Authors: A.A. Samsonov, P.S. Solov'ev, S.I. Solov'ev
Format: Article
Language:English
Published: Kazan Federal University 2017-09-01
Series:Учёные записки Казанского университета: Серия Физико-математические науки
Subjects:
Online Access:https://kpfu.ru/error-investigation-of-finite-element_332935.html
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850181177652019200
author A.A. Samsonov
P.S. Solov'ev
S.I. Solov'ev
author_facet A.A. Samsonov
P.S. Solov'ev
S.I. Solov'ev
author_sort A.A. Samsonov
collection DOAJ
description A positive definite differential eigenvalue problem with coefficients depending nonlinearly on the spectral parameter has been studied. The differential eigenvalue problem is formulated as a variational eigenvalue problem in a Hilbert space with bilinear forms nonlinearly depending on the spectral parameter. The variational problem has an increasing sequence of positive simple eigenvalues, which correspond to a normalized system of eigenfunctions. The variational problem has been approximated by a mesh scheme of the finite element method on the uniform grid with Lagrangian finite elements of arbitrary order. Error estimates for approximate eigenvalues and eigenfunctions in dependence on mesh size and eigenvalue size have been established. The obtained results are generalizations of the well-known results for differential eigenvalue problems with linear dependence on the spectral parameter.
format Article
id doaj-art-e8a8f86bfe9c43d69a26cf417e99e145
institution OA Journals
issn 2541-7746
2500-2198
language English
publishDate 2017-09-01
publisher Kazan Federal University
record_format Article
series Учёные записки Казанского университета: Серия Физико-математические науки
spelling doaj-art-e8a8f86bfe9c43d69a26cf417e99e1452025-08-20T02:17:57ZengKazan Federal UniversityУчёные записки Казанского университета: Серия Физико-математические науки2541-77462500-21982017-09-011593354363Error investigation of finite element approximation for a nonlinear Sturm–Liouville problemA.A. Samsonov0P.S. Solov'ev1S.I. Solov'ev2Kazan Federal University, Kazan, 420008 RussiaKazan Federal University, Kazan, 420008 RussiaKazan Federal University, Kazan, 420008 RussiaA positive definite differential eigenvalue problem with coefficients depending nonlinearly on the spectral parameter has been studied. The differential eigenvalue problem is formulated as a variational eigenvalue problem in a Hilbert space with bilinear forms nonlinearly depending on the spectral parameter. The variational problem has an increasing sequence of positive simple eigenvalues, which correspond to a normalized system of eigenfunctions. The variational problem has been approximated by a mesh scheme of the finite element method on the uniform grid with Lagrangian finite elements of arbitrary order. Error estimates for approximate eigenvalues and eigenfunctions in dependence on mesh size and eigenvalue size have been established. The obtained results are generalizations of the well-known results for differential eigenvalue problems with linear dependence on the spectral parameter.https://kpfu.ru/error-investigation-of-finite-element_332935.htmleigenvalueeigenfunctioneigenvalue problemmesh approximationfinite element method
spellingShingle A.A. Samsonov
P.S. Solov'ev
S.I. Solov'ev
Error investigation of finite element approximation for a nonlinear Sturm–Liouville problem
Учёные записки Казанского университета: Серия Физико-математические науки
eigenvalue
eigenfunction
eigenvalue problem
mesh approximation
finite element method
title Error investigation of finite element approximation for a nonlinear Sturm–Liouville problem
title_full Error investigation of finite element approximation for a nonlinear Sturm–Liouville problem
title_fullStr Error investigation of finite element approximation for a nonlinear Sturm–Liouville problem
title_full_unstemmed Error investigation of finite element approximation for a nonlinear Sturm–Liouville problem
title_short Error investigation of finite element approximation for a nonlinear Sturm–Liouville problem
title_sort error investigation of finite element approximation for a nonlinear sturm liouville problem
topic eigenvalue
eigenfunction
eigenvalue problem
mesh approximation
finite element method
url https://kpfu.ru/error-investigation-of-finite-element_332935.html
work_keys_str_mv AT aasamsonov errorinvestigationoffiniteelementapproximationforanonlinearsturmliouvilleproblem
AT pssolovev errorinvestigationoffiniteelementapproximationforanonlinearsturmliouvilleproblem
AT sisolovev errorinvestigationoffiniteelementapproximationforanonlinearsturmliouvilleproblem