A Comparative Analysis of Three Data Fusion Methods and Construction of the Fusion Method Selection Paradigm

Multisource and multimodal data fusion plays a pivotal role in large-scale artificial intelligence applications involving big data. However, the choice of fusion strategies for different scenarios is often based on experimental comparisons, which leads to increased computational costs during model t...

Full description

Saved in:
Bibliographic Details
Main Authors: Ziqi Liu, Ziqiao Yin, Zhilong Mi, Binghui Guo, Zhiming Zheng
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/8/1218
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multisource and multimodal data fusion plays a pivotal role in large-scale artificial intelligence applications involving big data. However, the choice of fusion strategies for different scenarios is often based on experimental comparisons, which leads to increased computational costs during model training and suboptimal performance during testing. In this paper, we present a theoretical analysis of early fusion, late fusion, and gradual fusion methods. We derive equivalence conditions between early and late fusions within the framework of generalized linear models. Moreover, we analyze the failure conditions of early fusion in the presence of nonlinear feature-label relationships. Furthermore, we propose an approximate equation for evaluating the accuracy of early and late fusion methods as a function of sample size, feature quantity, and modality number. We also propose a critical sample size threshold at which the performance dominance of early fusion and late fusion models undergoes a reversal. Finally, we introduce a fusion method selection paradigm for selecting the most appropriate fusion method prior to task execution and demonstrate its effectiveness through extensive numerical experiments. Our theoretical framework is expected to solve the problems of computational and resource costs in model construction, improving the scalability and efficiency of data fusion methods.
ISSN:2227-7390