Fixed-Time Event-Triggered Consensus Power-Sharing Control for Hybrid AC/DC Microgrid Parallel Bi-Directional Interconnect Converters

Although power sharing in hybrid AC/DC microgrids (HMGs) has been widely researched, traditional power-sharing control is based on an infinite time consensus method, and the communication bandwidth is large. Therefore, this paper proposes a power-sharing strategy for HMG parallel bi-directional inte...

Full description

Saved in:
Bibliographic Details
Main Authors: Junjie Wu, Siyu Lyu, Benhua Qian, Chuanyu Jiang, Ziqaing Song, Jun Xiao
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/9/1534
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although power sharing in hybrid AC/DC microgrids (HMGs) has been widely researched, traditional power-sharing control is based on an infinite time consensus method, and the communication bandwidth is large. Therefore, this paper proposes a power-sharing strategy for HMG parallel bi-directional interconnected converters (BICs) considering fixed-time stabilization and event-triggered control. Firstly, every BIC has a well-designed local control method to generate the corresponding power reference for the BIC, which provides the basis for further research. Secondly, a fixed-time-based power-sharing controller is designed in order to improve the convergence speed of power-sharing control for HMG parallel BICs. Finally, an event-triggered method is applied to reduce the system communication bandwidth and the frequency of controller updates. In this paper, we first transform the parallel BIC control problem into a multi-agent system (MAS) consensus problem. Furthermore, a fixed time based on an event trigger consensus method is proposed at the secondary control level. The energy flow between the two subgrids can be shared according to the rated power of each BIC. Finally, the effectiveness of the proposed fixed-time event-triggered power-sharing control is verified through simulation and experiments.
ISSN:2227-7390