Evaluation of quantum key distribution systems against injection-locking attacks
While ideal quantum key distribution (QKD) systems are well-understood, practical implementations face various vulnerabilities, such as side-channel attacks resulting from device imperfections. Current security proofs for decoy-state BB84 protocols either assume uniform phase randomization of Alice’...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
AIP Publishing LLC
2025-06-01
|
| Series: | APL Photonics |
| Online Access: | http://dx.doi.org/10.1063/5.0260685 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | While ideal quantum key distribution (QKD) systems are well-understood, practical implementations face various vulnerabilities, such as side-channel attacks resulting from device imperfections. Current security proofs for decoy-state BB84 protocols either assume uniform phase randomization of Alice’s signals, which is compromised by practical limitations and attacks like injection locking, or rely on a (partially) characterized phase distribution. This work presents an experimental method to characterize the phase de-randomization from injection locking using a heterodyne detection setup, providing a lower bound on the degree of isolation required to protect QKD transmitters against injection-locking attacks. The methods presented are source-agnostic and can be used to evaluate general QKD systems against injection-locking attacks. |
|---|---|
| ISSN: | 2378-0967 |