CSTrans: cross-subdomain transformer for unsupervised domain adaptation
Abstract Unsupervised domain adaptation (UDA) aims to make full use of a labeled source domain data to classify an unlabeled target domain data. With the success of Transformer in various vision tasks, existing UDA methods borrow strong Transformer framework to learn global domain-invariant feature...
Saved in:
Main Authors: | Junchi Liu, Xiang Zhang, Zhigang Luo |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2025-01-01
|
Series: | Complex & Intelligent Systems |
Subjects: | |
Online Access: | https://doi.org/10.1007/s40747-024-01709-4 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Structure preserved ordinal unsupervised domain adaptation
by: Qing Tian, et al.
Published: (2024-11-01) -
MeTa Learning-Based Optimization of Unsupervised Domain Adaptation Deep Networks
by: Hsiau-Wen Lin, et al.
Published: (2025-01-01) -
Multi-View Prototypical Transport for Unsupervised Domain Adaptation
by: Sunhyeok Lee, et al.
Published: (2025-01-01) -
Normalization-Guided and Gradient-Weighted Unsupervised Domain Adaptation Network for Transfer Diagnosis of Rolling Bearing Faults Under Class Imbalance
by: Hao Luo, et al.
Published: (2025-01-01) -
TPDTNet: Two-Phase Distillation Training for Visible-to-Infrared Unsupervised Domain Adaptive Object Detection
by: Siyu Wang, et al.
Published: (2025-01-01)