On the sumsets of units in a ring of matrices over $ \mathbb{Z}/m\mathbb{Z} $
Let $ M_{n, m}: = Mat_n(\mathbb{Z}/m\mathbb{Z}) $ be the ring of matrices of $ n\times n $ over $ \mathbb{Z}/m\mathbb{Z} $ and $ G_{n, m}: = Gl_n(\mathbb{Z}/m\mathbb{Z}) $ be the multiplicative group of units of $ M_{n, m} $ with $ n\geqslant 2, m\geqslant 2. $ In this paper, we obtain an exact form...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
AIMS Press
2025-03-01
|
| Series: | Electronic Research Archive |
| Subjects: | |
| Online Access: | https://www.aimspress.com/article/doi/10.3934/era.2025059 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|