On the sumsets of units in a ring of matrices over $ \mathbb{Z}/m\mathbb{Z} $

Let $ M_{n, m}: = Mat_n(\mathbb{Z}/m\mathbb{Z}) $ be the ring of matrices of $ n\times n $ over $ \mathbb{Z}/m\mathbb{Z} $ and $ G_{n, m}: = Gl_n(\mathbb{Z}/m\mathbb{Z}) $ be the multiplicative group of units of $ M_{n, m} $ with $ n\geqslant 2, m\geqslant 2. $ In this paper, we obtain an exact form...

Full description

Saved in:
Bibliographic Details
Main Authors: Yifan Luo, Kaisheng Lei, Qingzhong Ji
Format: Article
Language:English
Published: AIMS Press 2025-03-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2025059
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850216110235844608
author Yifan Luo
Kaisheng Lei
Qingzhong Ji
author_facet Yifan Luo
Kaisheng Lei
Qingzhong Ji
author_sort Yifan Luo
collection DOAJ
description Let $ M_{n, m}: = Mat_n(\mathbb{Z}/m\mathbb{Z}) $ be the ring of matrices of $ n\times n $ over $ \mathbb{Z}/m\mathbb{Z} $ and $ G_{n, m}: = Gl_n(\mathbb{Z}/m\mathbb{Z}) $ be the multiplicative group of units of $ M_{n, m} $ with $ n\geqslant 2, m\geqslant 2. $ In this paper, we obtain an exact formula for the number of representations of any element of $ M_{2, m} $ as the sum of $ k $ units in $ M_{2, m} $. Furthermore, by using the technique of Fourier transformation, we also give a formula for the case $ n\ge3 $ and $ m = p $ is a prime.
format Article
id doaj-art-e81a4a90a77d40e2a2727f2a7eaecb1c
institution OA Journals
issn 2688-1594
language English
publishDate 2025-03-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj-art-e81a4a90a77d40e2a2727f2a7eaecb1c2025-08-20T02:08:24ZengAIMS PressElectronic Research Archive2688-15942025-03-013331323133210.3934/era.2025059On the sumsets of units in a ring of matrices over $ \mathbb{Z}/m\mathbb{Z} $Yifan Luo0Kaisheng Lei1Qingzhong Ji2Department of Mathematics, Nanjing University, Nanjing 210000, ChinaDepartment of Mathematics, Nanjing University, Nanjing 210000, ChinaDepartment of Mathematics, Nanjing University, Nanjing 210000, ChinaLet $ M_{n, m}: = Mat_n(\mathbb{Z}/m\mathbb{Z}) $ be the ring of matrices of $ n\times n $ over $ \mathbb{Z}/m\mathbb{Z} $ and $ G_{n, m}: = Gl_n(\mathbb{Z}/m\mathbb{Z}) $ be the multiplicative group of units of $ M_{n, m} $ with $ n\geqslant 2, m\geqslant 2. $ In this paper, we obtain an exact formula for the number of representations of any element of $ M_{2, m} $ as the sum of $ k $ units in $ M_{2, m} $. Furthermore, by using the technique of Fourier transformation, we also give a formula for the case $ n\ge3 $ and $ m = p $ is a prime.https://www.aimspress.com/article/doi/10.3934/era.2025059rings of matricesfinite fieldssums of unitsfourier transformation
spellingShingle Yifan Luo
Kaisheng Lei
Qingzhong Ji
On the sumsets of units in a ring of matrices over $ \mathbb{Z}/m\mathbb{Z} $
Electronic Research Archive
rings of matrices
finite fields
sums of units
fourier transformation
title On the sumsets of units in a ring of matrices over $ \mathbb{Z}/m\mathbb{Z} $
title_full On the sumsets of units in a ring of matrices over $ \mathbb{Z}/m\mathbb{Z} $
title_fullStr On the sumsets of units in a ring of matrices over $ \mathbb{Z}/m\mathbb{Z} $
title_full_unstemmed On the sumsets of units in a ring of matrices over $ \mathbb{Z}/m\mathbb{Z} $
title_short On the sumsets of units in a ring of matrices over $ \mathbb{Z}/m\mathbb{Z} $
title_sort on the sumsets of units in a ring of matrices over mathbb z m mathbb z
topic rings of matrices
finite fields
sums of units
fourier transformation
url https://www.aimspress.com/article/doi/10.3934/era.2025059
work_keys_str_mv AT yifanluo onthesumsetsofunitsinaringofmatricesovermathbbzmmathbbz
AT kaishenglei onthesumsetsofunitsinaringofmatricesovermathbbzmmathbbz
AT qingzhongji onthesumsetsofunitsinaringofmatricesovermathbbzmmathbbz