3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data
Abstract Advanced Interferometric Synthetic Aperture Radar (InSAR) data has led to an extensive observation of Earth's surface displacements. Whereas the combined use of high‐resolution InSAR, leveling and GPS data may enable highly detailed three‐dimensional deformation models, publicly availa...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2025-07-01
|
| Series: | Geophysical Research Letters |
| Subjects: | |
| Online Access: | https://doi.org/10.1029/2025GL115316 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849236696679317504 |
|---|---|
| author | Luis A. Gallardo Olga Sarychikhina Ewa Glowacka Braulio Robles |
| author_facet | Luis A. Gallardo Olga Sarychikhina Ewa Glowacka Braulio Robles |
| author_sort | Luis A. Gallardo |
| collection | DOAJ |
| description | Abstract Advanced Interferometric Synthetic Aperture Radar (InSAR) data has led to an extensive observation of Earth's surface displacements. Whereas the combined use of high‐resolution InSAR, leveling and GPS data may enable highly detailed three‐dimensional deformation models, publicly available modeling and inversion algorithms either seek a single homogeneously deformed source or involve a few thousand modeling elements. We present and release a conjugate‐gradient inversion code that searches for the three‐dimensional distribution of the volumetric strain that predicts simultaneously any observed InSAR, leveling and GPS surface displacement. By applying our algorithm on to leveling and InSAR data of the Cerro Prieto Geothermal area in Mexico for the 2012–2015 period, we find that the volume loss matches the extent and depth of the known geothermal reservoir or recharging aquifer and corresponds to 13% of the reported geothermal fluid extraction volume. We also identify non‐volumetric deformation near the tectonic faults, possibly associated with creep displacement. |
| format | Article |
| id | doaj-art-e7de75d4de2f42cbbef585fccf2f9312 |
| institution | Kabale University |
| issn | 0094-8276 1944-8007 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Wiley |
| record_format | Article |
| series | Geophysical Research Letters |
| spelling | doaj-art-e7de75d4de2f42cbbef585fccf2f93122025-08-20T04:02:09ZengWileyGeophysical Research Letters0094-82761944-80072025-07-015213n/an/a10.1029/2025GL1153163D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling DataLuis A. Gallardo0Olga Sarychikhina1Ewa Glowacka2Braulio Robles3Earth Science Division Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Ensenada MexicoEarth Science Division Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Ensenada MexicoEarth Science Division Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Ensenada MexicoInstituto Mexicano de Tecnología del Agua (IMTA) Jiutepec MexicoAbstract Advanced Interferometric Synthetic Aperture Radar (InSAR) data has led to an extensive observation of Earth's surface displacements. Whereas the combined use of high‐resolution InSAR, leveling and GPS data may enable highly detailed three‐dimensional deformation models, publicly available modeling and inversion algorithms either seek a single homogeneously deformed source or involve a few thousand modeling elements. We present and release a conjugate‐gradient inversion code that searches for the three‐dimensional distribution of the volumetric strain that predicts simultaneously any observed InSAR, leveling and GPS surface displacement. By applying our algorithm on to leveling and InSAR data of the Cerro Prieto Geothermal area in Mexico for the 2012–2015 period, we find that the volume loss matches the extent and depth of the known geothermal reservoir or recharging aquifer and corresponds to 13% of the reported geothermal fluid extraction volume. We also identify non‐volumetric deformation near the tectonic faults, possibly associated with creep displacement.https://doi.org/10.1029/2025GL115316InSAR inversionCerro Prieto geothermal fieldjoint inversionsubsidence modeling |
| spellingShingle | Luis A. Gallardo Olga Sarychikhina Ewa Glowacka Braulio Robles 3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data Geophysical Research Letters InSAR inversion Cerro Prieto geothermal field joint inversion subsidence modeling |
| title | 3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data |
| title_full | 3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data |
| title_fullStr | 3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data |
| title_full_unstemmed | 3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data |
| title_short | 3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data |
| title_sort | 3d volumetric strain distribution of the cerro prieto geothermal field inferred from inverse modeling of insar and leveling data |
| topic | InSAR inversion Cerro Prieto geothermal field joint inversion subsidence modeling |
| url | https://doi.org/10.1029/2025GL115316 |
| work_keys_str_mv | AT luisagallardo 3dvolumetricstraindistributionofthecerroprietogeothermalfieldinferredfrominversemodelingofinsarandlevelingdata AT olgasarychikhina 3dvolumetricstraindistributionofthecerroprietogeothermalfieldinferredfrominversemodelingofinsarandlevelingdata AT ewaglowacka 3dvolumetricstraindistributionofthecerroprietogeothermalfieldinferredfrominversemodelingofinsarandlevelingdata AT brauliorobles 3dvolumetricstraindistributionofthecerroprietogeothermalfieldinferredfrominversemodelingofinsarandlevelingdata |