Metrics and Methods for Evaluation of Over-The-Air Performance of MIMO User Equipment

Commercial User Equipment (UE) testing and certification has become more complex for state-of-the-art mobile communication standards such as 3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) due to the extensive use of Multiple Input-Multiple Output (MIMO) transmission techniques....

Full description

Saved in:
Bibliographic Details
Main Authors: Yifei Feng, Werner L. Schroeder, Christoph von Gagern, Adam Tankielun, Thomas Kaiser
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2012/598620
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Commercial User Equipment (UE) testing and certification has become more complex for state-of-the-art mobile communication standards such as 3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) due to the extensive use of Multiple Input-Multiple Output (MIMO) transmission techniques. The variety of different MIMO operating modes and the almost unlimited choice of possible multipath channel conditions under which UE performance may be evaluated are not accounted for by established Single Input-Single Output (SISO) Over-The-Air (OTA) performance metrics like Total Isotropic Sensitivity (TIS) and Total Radiated Power (TRP). As pointed out in this contribution, meaningful metrics and cost-effective, low-complexity measurement methods can, nevertheless, be derived by focusing on characterization of the physical attributes of UE and by adopting statistical metrics. Starting from a brief review of the most important MIMO operating modes in the 3GPP LTE standard, the relation between UE properties and UE performance, which is observed in these operating modes, is discussed. Two complementary metrics and corresponding measurement procedures for evaluation of MIMO OTA performance are presented in order to address the diversity of possible propagation scenarios. Measurement results from preliminary implementations of the two proposed measurement procedures, including comparison between different LTE devices, are presented.
ISSN:1687-5869
1687-5877