Nonlinear functional integrodifferential equations in Hilbert space
Let X be a Hilbert space and let Ω⊂Rn be a bounded domain with smooth boundary ∂Ω. We establish the existence and norm estimation of solutions for the parabolic partial functional integro-differential equation in X by using the fundamental solution.
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1999-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171299228475 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832560562540642304 |
---|---|
author | J. Y. Park S. Y. Lee M. J. Lee |
author_facet | J. Y. Park S. Y. Lee M. J. Lee |
author_sort | J. Y. Park |
collection | DOAJ |
description | Let X be a Hilbert space and let Ω⊂Rn be a bounded domain with smooth boundary ∂Ω. We establish the existence and norm estimation of solutions for the parabolic partial functional integro-differential equation in X by using the fundamental solution. |
format | Article |
id | doaj-art-e7aa5eca85b34d46a72ae93b3ecf8c7c |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1999-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-e7aa5eca85b34d46a72ae93b3ecf8c7c2025-02-03T01:27:18ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251999-01-0122484785410.1155/S0161171299228475Nonlinear functional integrodifferential equations in Hilbert spaceJ. Y. Park0S. Y. Lee1M. J. Lee2Department of Mathematics, Pusan National University, Pusan 609-735, KoreaDepartment of Mathematics, Pusan National University, Pusan 609-735, KoreaDepartment of Mathematics, Pusan National University, Pusan 609-735, KoreaLet X be a Hilbert space and let Ω⊂Rn be a bounded domain with smooth boundary ∂Ω. We establish the existence and norm estimation of solutions for the parabolic partial functional integro-differential equation in X by using the fundamental solution.http://dx.doi.org/10.1155/S0161171299228475Functional integro-differential equationelliptic differential operatorsfundamental solutionGårding's inequalitysuccessive approximationnorm estimation. |
spellingShingle | J. Y. Park S. Y. Lee M. J. Lee Nonlinear functional integrodifferential equations in Hilbert space International Journal of Mathematics and Mathematical Sciences Functional integro-differential equation elliptic differential operators fundamental solution Gårding's inequality successive approximation norm estimation. |
title | Nonlinear functional integrodifferential equations in Hilbert space |
title_full | Nonlinear functional integrodifferential equations in Hilbert space |
title_fullStr | Nonlinear functional integrodifferential equations in Hilbert space |
title_full_unstemmed | Nonlinear functional integrodifferential equations in Hilbert space |
title_short | Nonlinear functional integrodifferential equations in Hilbert space |
title_sort | nonlinear functional integrodifferential equations in hilbert space |
topic | Functional integro-differential equation elliptic differential operators fundamental solution Gårding's inequality successive approximation norm estimation. |
url | http://dx.doi.org/10.1155/S0161171299228475 |
work_keys_str_mv | AT jypark nonlinearfunctionalintegrodifferentialequationsinhilbertspace AT sylee nonlinearfunctionalintegrodifferentialequationsinhilbertspace AT mjlee nonlinearfunctionalintegrodifferentialequationsinhilbertspace |