Nonlinear functional integrodifferential equations in Hilbert space

Let X be a Hilbert space and let Ω⊂Rn be a bounded domain with smooth boundary ∂Ω. We establish the existence and norm estimation of solutions for the parabolic partial functional integro-differential equation in X by using the fundamental solution.

Saved in:
Bibliographic Details
Main Authors: J. Y. Park, S. Y. Lee, M. J. Lee
Format: Article
Language:English
Published: Wiley 1999-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171299228475
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560562540642304
author J. Y. Park
S. Y. Lee
M. J. Lee
author_facet J. Y. Park
S. Y. Lee
M. J. Lee
author_sort J. Y. Park
collection DOAJ
description Let X be a Hilbert space and let Ω⊂Rn be a bounded domain with smooth boundary ∂Ω. We establish the existence and norm estimation of solutions for the parabolic partial functional integro-differential equation in X by using the fundamental solution.
format Article
id doaj-art-e7aa5eca85b34d46a72ae93b3ecf8c7c
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1999-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-e7aa5eca85b34d46a72ae93b3ecf8c7c2025-02-03T01:27:18ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251999-01-0122484785410.1155/S0161171299228475Nonlinear functional integrodifferential equations in Hilbert spaceJ. Y. Park0S. Y. Lee1M. J. Lee2Department of Mathematics, Pusan National University, Pusan 609-735, KoreaDepartment of Mathematics, Pusan National University, Pusan 609-735, KoreaDepartment of Mathematics, Pusan National University, Pusan 609-735, KoreaLet X be a Hilbert space and let Ω⊂Rn be a bounded domain with smooth boundary ∂Ω. We establish the existence and norm estimation of solutions for the parabolic partial functional integro-differential equation in X by using the fundamental solution.http://dx.doi.org/10.1155/S0161171299228475Functional integro-differential equationelliptic differential operatorsfundamental solutionGårding's inequalitysuccessive approximationnorm estimation.
spellingShingle J. Y. Park
S. Y. Lee
M. J. Lee
Nonlinear functional integrodifferential equations in Hilbert space
International Journal of Mathematics and Mathematical Sciences
Functional integro-differential equation
elliptic differential operators
fundamental solution
Gårding's inequality
successive approximation
norm estimation.
title Nonlinear functional integrodifferential equations in Hilbert space
title_full Nonlinear functional integrodifferential equations in Hilbert space
title_fullStr Nonlinear functional integrodifferential equations in Hilbert space
title_full_unstemmed Nonlinear functional integrodifferential equations in Hilbert space
title_short Nonlinear functional integrodifferential equations in Hilbert space
title_sort nonlinear functional integrodifferential equations in hilbert space
topic Functional integro-differential equation
elliptic differential operators
fundamental solution
Gårding's inequality
successive approximation
norm estimation.
url http://dx.doi.org/10.1155/S0161171299228475
work_keys_str_mv AT jypark nonlinearfunctionalintegrodifferentialequationsinhilbertspace
AT sylee nonlinearfunctionalintegrodifferentialequationsinhilbertspace
AT mjlee nonlinearfunctionalintegrodifferentialequationsinhilbertspace