A Topology Identification Strategy of Low-Voltage Distribution Grids Based on Feature-Enhanced Graph Attention Network

Accurate topological connectivity is critical for the safe operation and management of low-voltage distribution grids (LVDGs). However, due to the complexity of the structure and the lack of measurement equipment, obtaining and maintaining these topological connections has become a challenge. This p...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang Lei, Fan Yang, Yanjun Feng, Wei Hu, Yinzhang Cheng
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/11/2821
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate topological connectivity is critical for the safe operation and management of low-voltage distribution grids (LVDGs). However, due to the complexity of the structure and the lack of measurement equipment, obtaining and maintaining these topological connections has become a challenge. This paper proposes a topology identification strategy for LVDGs based on a feature-enhanced graph attention network (F-GAT). First, the topology of the LVDG is represented as a graph structure using measurement data collected from intelligent terminals, with a feature matrix encoding the basic information of each entity. Secondly, the meta-path form of the heterogeneous graph is designed according to the connection characteristics of the LVDG, and the walking sequence is enhanced using a heterogeneous skip-gram model to obtain an embedded representation of the structural characteristics of each node. Then, the F-GAT model is used to learn potential association patterns and structural information in the graph topology, achieving a joint low-dimensional representation of electrical attributes and graph semantics. Finally, case studies on five urban LVDGs in the Wuhan region are conducted to validate the effectiveness and practicality of the proposed F-GAT model.
ISSN:1996-1073