A Topology Identification Strategy of Low-Voltage Distribution Grids Based on Feature-Enhanced Graph Attention Network
Accurate topological connectivity is critical for the safe operation and management of low-voltage distribution grids (LVDGs). However, due to the complexity of the structure and the lack of measurement equipment, obtaining and maintaining these topological connections has become a challenge. This p...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/11/2821 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Accurate topological connectivity is critical for the safe operation and management of low-voltage distribution grids (LVDGs). However, due to the complexity of the structure and the lack of measurement equipment, obtaining and maintaining these topological connections has become a challenge. This paper proposes a topology identification strategy for LVDGs based on a feature-enhanced graph attention network (F-GAT). First, the topology of the LVDG is represented as a graph structure using measurement data collected from intelligent terminals, with a feature matrix encoding the basic information of each entity. Secondly, the meta-path form of the heterogeneous graph is designed according to the connection characteristics of the LVDG, and the walking sequence is enhanced using a heterogeneous skip-gram model to obtain an embedded representation of the structural characteristics of each node. Then, the F-GAT model is used to learn potential association patterns and structural information in the graph topology, achieving a joint low-dimensional representation of electrical attributes and graph semantics. Finally, case studies on five urban LVDGs in the Wuhan region are conducted to validate the effectiveness and practicality of the proposed F-GAT model. |
|---|---|
| ISSN: | 1996-1073 |