Consensus Analysis of Fractional-Order Multiagent Systems with Double-Integrator
In nature, many phenomena can be explained by coordinated behavior of agents with fractional-order dynamics. In this paper, the consensus problem of fractional-order multiagent systems with double-integrator is studied, where the fractional-order satisfies 0<α<2. Based on the fractional-order...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2017/9256532 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In nature, many phenomena can be explained by coordinated behavior of agents with fractional-order dynamics. In this paper, the consensus problem of fractional-order multiagent systems with double-integrator is studied, where the fractional-order satisfies 0<α<2. Based on the fractional-order stability theory, Mittag-Leffler function, and Laplace transform, a necessary and sufficient condition is obtained under the assumption that the directed graph for the communication network contains a directed spanning tree. Finally, an example with simulation is presented to illustrate the theoretical results. |
---|---|
ISSN: | 1026-0226 1607-887X |