Consensus Analysis of Fractional-Order Multiagent Systems with Double-Integrator

In nature, many phenomena can be explained by coordinated behavior of agents with fractional-order dynamics. In this paper, the consensus problem of fractional-order multiagent systems with double-integrator is studied, where the fractional-order satisfies 0<α<2. Based on the fractional-order...

Full description

Saved in:
Bibliographic Details
Main Authors: Chunde Yang, Wenjing Li, Wei Zhu
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2017/9256532
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In nature, many phenomena can be explained by coordinated behavior of agents with fractional-order dynamics. In this paper, the consensus problem of fractional-order multiagent systems with double-integrator is studied, where the fractional-order satisfies 0<α<2. Based on the fractional-order stability theory, Mittag-Leffler function, and Laplace transform, a necessary and sufficient condition is obtained under the assumption that the directed graph for the communication network contains a directed spanning tree. Finally, an example with simulation is presented to illustrate the theoretical results.
ISSN:1026-0226
1607-887X