Affine Discontinuous Galerkin Method Approximation of Second-Order Linear Elliptic Equations in Divergence Form with Right-Hand Side in L1

We consider the standard affine discontinuous Galerkin method approximation of the second-order linear elliptic equation in divergence form with coefficients in L∞Ω and the right-hand side belongs to L1Ω; we extend the results where the case of linear finite elements approximation is considered. We...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdeluaab Lidouh, Rachid Messaoudi
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2018/4650512
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the standard affine discontinuous Galerkin method approximation of the second-order linear elliptic equation in divergence form with coefficients in L∞Ω and the right-hand side belongs to L1Ω; we extend the results where the case of linear finite elements approximation is considered. We prove that the unique solution of the discrete problem converges in W01,qΩ for every q with 1≤q<d/d-1 (d=2 or d=3) to the unique renormalized solution of the problem. Statements and proofs remain valid in our case, which permits obtaining a weaker result when the right-hand side is a bounded Radon measure and, when the coefficients are smooth, an error estimate in W01,qΩ when the right-hand side f belongs to LrΩ verifying Tkf∈H1Ω for every k>0, for some r>1.
ISSN:1687-9643
1687-9651