Affine Discontinuous Galerkin Method Approximation of Second-Order Linear Elliptic Equations in Divergence Form with Right-Hand Side in L1
We consider the standard affine discontinuous Galerkin method approximation of the second-order linear elliptic equation in divergence form with coefficients in L∞Ω and the right-hand side belongs to L1Ω; we extend the results where the case of linear finite elements approximation is considered. We...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | International Journal of Differential Equations |
Online Access: | http://dx.doi.org/10.1155/2018/4650512 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the standard affine discontinuous Galerkin method approximation of the second-order linear elliptic equation in divergence form with coefficients in L∞Ω and the right-hand side belongs to L1Ω; we extend the results where the case of linear finite elements approximation is considered. We prove that the unique solution of the discrete problem converges in W01,qΩ for every q with 1≤q<d/d-1 (d=2 or d=3) to the unique renormalized solution of the problem. Statements and proofs remain valid in our case, which permits obtaining a weaker result when the right-hand side is a bounded Radon measure and, when the coefficients are smooth, an error estimate in W01,qΩ when the right-hand side f belongs to LrΩ verifying Tkf∈H1Ω for every k>0, for some r>1. |
---|---|
ISSN: | 1687-9643 1687-9651 |