Bifurcation Analysis for a Kind of Nonlinear Finance System with Delayed Feedback and Its Application to Control of Chaos

A kind of nonlinear finance system with time-delayed feedback is considered. Firstly, by employing the polynomial theorem to analyze the distribution of the roots to the associate characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given. Secondly, by using the...

Full description

Saved in:
Bibliographic Details
Main Author: Rongyan Zhang
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/316390
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A kind of nonlinear finance system with time-delayed feedback is considered. Firstly, by employing the polynomial theorem to analyze the distribution of the roots to the associate characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given. Secondly, by using the normal form theory and center manifold argument, we derive the explicit formulas determining the stability, direction, and other properties of bifurcating periodic solutions. Finally, we give several numerical simulations, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable steady state or a stable periodic orbit.
ISSN:1110-757X
1687-0042