Echeloned Spaces

We introduce the notion of echeloned spaces – an order-theoretic abstraction of metric spaces. The first step is to characterize metrizable echeloned spaces. It turns out that morphisms between metrizable echeloned spaces are uniformly continuous or have a uniformly discrete image. In particular, ev...

Full description

Saved in:
Bibliographic Details
Main Authors: Maxime Gheysens, Bojana Pavlica, Christian Pech, Maja Pech, Friedrich Martin Schneider
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509425000477/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850260996982046720
author Maxime Gheysens
Bojana Pavlica
Christian Pech
Maja Pech
Friedrich Martin Schneider
author_facet Maxime Gheysens
Bojana Pavlica
Christian Pech
Maja Pech
Friedrich Martin Schneider
author_sort Maxime Gheysens
collection DOAJ
description We introduce the notion of echeloned spaces – an order-theoretic abstraction of metric spaces. The first step is to characterize metrizable echeloned spaces. It turns out that morphisms between metrizable echeloned spaces are uniformly continuous or have a uniformly discrete image. In particular, every automorphism of a metrizable echeloned space is uniformly continuous, and for every metric space with midpoints, the automorphisms of the induced echeloned space are precisely the dilations.
format Article
id doaj-art-e6bd70d4c0304f4db520065e9c26a5d0
institution OA Journals
issn 2050-5094
language English
publishDate 2025-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj-art-e6bd70d4c0304f4db520065e9c26a5d02025-08-20T01:55:31ZengCambridge University PressForum of Mathematics, Sigma2050-50942025-01-011310.1017/fms.2025.47Echeloned SpacesMaxime Gheysens0Bojana Pavlica1https://orcid.org/0000-0002-8080-8610Christian Pech2https://orcid.org/0000-0002-5018-013XMaja Pech3https://orcid.org/0000-0003-3426-199XFriedrich Martin Schneider4https://orcid.org/0000-0002-4126-2758Institute of Discrete Mathematics and Algebra, Faculty of Mathematics and Computer Science, Technische Universität Bergakademie Freiberg, D-09596 Freiberg, Germany; E-mail:Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; E-mail:Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic; E-mail:Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; E-mail:Institute of Discrete Mathematics and Algebra, Faculty of Mathematics and Computer Science, Technische Universität Bergakademie Freiberg, D-09596 Freiberg, GermanyWe introduce the notion of echeloned spaces – an order-theoretic abstraction of metric spaces. The first step is to characterize metrizable echeloned spaces. It turns out that morphisms between metrizable echeloned spaces are uniformly continuous or have a uniformly discrete image. In particular, every automorphism of a metrizable echeloned space is uniformly continuous, and for every metric space with midpoints, the automorphisms of the induced echeloned space are precisely the dilations.https://www.cambridge.org/core/product/identifier/S2050509425000477/type/journal_article03C5005D1005C5554E3554E4054H11
spellingShingle Maxime Gheysens
Bojana Pavlica
Christian Pech
Maja Pech
Friedrich Martin Schneider
Echeloned Spaces
Forum of Mathematics, Sigma
03C50
05D10
05C55
54E35
54E40
54H11
title Echeloned Spaces
title_full Echeloned Spaces
title_fullStr Echeloned Spaces
title_full_unstemmed Echeloned Spaces
title_short Echeloned Spaces
title_sort echeloned spaces
topic 03C50
05D10
05C55
54E35
54E40
54H11
url https://www.cambridge.org/core/product/identifier/S2050509425000477/type/journal_article
work_keys_str_mv AT maximegheysens echelonedspaces
AT bojanapavlica echelonedspaces
AT christianpech echelonedspaces
AT majapech echelonedspaces
AT friedrichmartinschneider echelonedspaces