Establishment of a Sandwich ELISA for Detection of Pan-Merbecoviruses

<i>Merbecovirus</i>, a subgenus of <i>Betacoronavirus</i>, includes MERS-CoV and multiple bat-derived viruses with zoonotic potential. Given the unpredictable emergence of these viruses and their genetic diversity, development of broad-spectrum diagnostic tools is expected. I...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaixin Li, Misa Katayama, Ayano Ichikawa, Hiromichi Matsugo, Yuta Wakabayashi, Akiko Takenaka-Uema, Wataru Sekine, Taisuke Horimoto, Shin Murakami
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Pathogens
Subjects:
Online Access:https://www.mdpi.com/2076-0817/14/6/605
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<i>Merbecovirus</i>, a subgenus of <i>Betacoronavirus</i>, includes MERS-CoV and multiple bat-derived viruses with zoonotic potential. Given the unpredictable emergence of these viruses and their genetic diversity, development of broad-spectrum diagnostic tools is expected. In this study, we established a sandwich ELISA targeting the nucleocapsid (N) protein of merbecoviruses. We generated monoclonal antibodies (mAbs) using recombinant N protein of a bat merbecovirus, VsCoV-1, and selected cross-reactive clones for other merbecoviruses. Three mAbs showed strong reactivities with multiple merbecoviruses but not with SARS-CoV-2 or endemic human coronaviruses. Pairwise ELISA screening identified 1A8/10H6 mAbs as the optimal combination for detection of N protein from six merbecoviruses—VsCoV-1, EjCoV-3, MERS-CoV, NeoCoV, HKU4, and HKU5—with limits of detection (LODs) below 7.81 ng/mL, including 1.25 ng/mL for VsCoV-1. Infectious bat merbecovirus EjCoV-3 was detected at 1.3 × 10<sup>3</sup> PFU/mL. No cross-reactivity was observed with non-merbecoviruses, indicating its high specificity. This sandwich ELISA offers a rapid, reproducible, and cost-effective diagnostic platform with potential for high-throughput screening and automation. Moreover, its design is amenable to adaptation into point-of-care formats such as lateral flow assays, highlighting its value for field-based surveillance and pandemic preparedness.
ISSN:2076-0817