Study on Surface-Enhanced Raman Scattering Substrate Based on Titanium Oxide Nanorods Coated with Gold Nanoparticles

A 3D surface-enhanced Raman scattering (SERS) substrate based on titanium oxide nanorods (TiOx-NRs) coated with gold nanoparticles (Au-NPs) was fabricated by a simple hydrothermal, no-template process. The nanostructure of TiOx-NRs influenced by the concentrations of hydrochloric (HCl) acid and sodi...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaodong Wang, Xiulan Cheng, Xufeng Yu, Xueling Quan
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Nanotechnology
Online Access:http://dx.doi.org/10.1155/2018/9602480
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A 3D surface-enhanced Raman scattering (SERS) substrate based on titanium oxide nanorods (TiOx-NRs) coated with gold nanoparticles (Au-NPs) was fabricated by a simple hydrothermal, no-template process. The nanostructure of TiOx-NRs influenced by the concentrations of hydrochloric (HCl) acid and sodium chloride (NaCl) was studied in detail. The substrate showed the strongest Raman enhancement, when the diameters of Au-NPs were around 40 nm and the gaps of Au-NPs were in the range of 5 nm to 10 nm. The surface electric field of our substrate was examined by finite-different time-domain (FDTD) solutions. Rhodamine 6G (R6G) was chosen as the probe molecule to study the SERS performance of the substrates. The Raman signal of 10−10 M R6G was detected clearly by the substrate with the enhancement factor of 2.64 × 108. All relative standard deviation (RSD) values of the major peaks for R6G were within the scope of 10.4% to 16.7%. The substrate could work efficiently even after immersed in water for one month.
ISSN:1687-9503
1687-9511