Consecutive Rosochatius Deformations of the Garnier System and the Hénon-Heiles System
An algorithm of constructing infinitely many symplectic realizations of generalized sl(2) Gaudin magnet is proposed. Based on this algorithm, the consecutive Rosochatius deformations of integrable Hamiltonian systems are presented. As examples, the consecutive Rosochatius deformations of the Garnier...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/275450 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An algorithm of constructing infinitely many symplectic realizations of generalized sl(2) Gaudin magnet is proposed. Based on this algorithm, the consecutive Rosochatius deformations of integrable Hamiltonian systems are presented. As examples, the consecutive Rosochatius deformations of the Garnier system and the Hénon-Heiles system as well as their Lax representations, are obtained. |
---|---|
ISSN: | 1085-3375 1687-0409 |