Layer-by-Layer Self-Assembled Graphene Multilayer Films via Covalent Bonds for Supercapacitor Electrodes
To maximize the utilization of its single-atom thin nature, a facile scheme to fabricate graphene multilayer films via a layer-by-layer self-assembled process was presented. The structure of multilayer films was constructed by covalently bonding graphene oxide (GO) using p-phenylenediamine (PPD) as...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-05-01
|
Series: | Nanomaterials and Nanotechnology |
Subjects: | |
Online Access: | http://www.intechopen.com/journals/nanomaterials_and_nanotechnology/layer-by-layer-self-assembled-graphene-multilayer-films-via-covalent-bonds-for-supercapacitor-electr |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To maximize the utilization of its single-atom thin nature, a facile scheme to fabricate graphene multilayer films via a layer-by-layer self-assembled process was presented. The structure of multilayer films was constructed by covalently bonding graphene oxide (GO) using p-phenylenediamine (PPD) as a covalent cross-linking agent. The assembly process was confirmed to be repeatable and the structure was stable. With the π-π conjugated structure and a large number of spaces in the framework, the graphene multi‐ layer films exhibited excellent electrochemical perform‐ ance. The uniform ultrathin electrode exhibited a capacitance of 41.71 μF/cm2 at a discharge current of 0.1 μA/cm2, and displayed excellent stability of 88.9 % after 1000 charge-discharge cycles. |
---|---|
ISSN: | 1847-9804 |