Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings

Traditional feature extraction and selection is a labor-intensive process requiring expert knowledge of the relevant features pertinent to the system. This knowledge is sometimes a luxury and could introduce added uncertainty and bias to the results. To address this problem a deep learning enabled f...

Full description

Saved in:
Bibliographic Details
Main Authors: David Verstraete, Andrés Ferrada, Enrique López Droguett, Viviana Meruane, Mohammad Modarres
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2017/5067651
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditional feature extraction and selection is a labor-intensive process requiring expert knowledge of the relevant features pertinent to the system. This knowledge is sometimes a luxury and could introduce added uncertainty and bias to the results. To address this problem a deep learning enabled featureless methodology is proposed to automatically learn the features of the data. Time-frequency representations of the raw data are used to generate image representations of the raw signal, which are then fed into a deep convolutional neural network (CNN) architecture for classification and fault diagnosis. This methodology was applied to two public data sets of rolling element bearing vibration signals. Three time-frequency analysis methods (short-time Fourier transform, wavelet transform, and Hilbert-Huang transform) were explored for their representation effectiveness. The proposed CNN architecture achieves better results with less learnable parameters than similar architectures used for fault detection, including cases with experimental noise.
ISSN:1070-9622
1875-9203