On manimax theory in two Hilbert spaces

In this paper, we investigated the minimax of the bifunction J:H1(Ω)xV2→RmxRn, such that J(v1,v2)=((12a(v1,v1)−L(v1)),v2) where a(.,.) is a finite symmetric bilinear bicontinuous, coercive form on H1(Ω) and L belongs to the dual of H1(Ω).

Saved in:
Bibliographic Details
Main Authors: E. M. El-Kholy, Hanan Ali Abdou
Format: Article
Language:English
Published: Wiley 1996-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171296000725
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548925712629760
author E. M. El-Kholy
Hanan Ali Abdou
author_facet E. M. El-Kholy
Hanan Ali Abdou
author_sort E. M. El-Kholy
collection DOAJ
description In this paper, we investigated the minimax of the bifunction J:H1(Ω)xV2→RmxRn, such that J(v1,v2)=((12a(v1,v1)−L(v1)),v2) where a(.,.) is a finite symmetric bilinear bicontinuous, coercive form on H1(Ω) and L belongs to the dual of H1(Ω).
format Article
id doaj-art-e67c263a6d9f4ce3a12a085e303c0f78
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1996-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-e67c263a6d9f4ce3a12a085e303c0f782025-02-03T06:12:46ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251996-01-0119352152810.1155/S0161171296000725On manimax theory in two Hilbert spacesE. M. El-Kholy0Hanan Ali Abdou1Faculty of Science, Department of Mathematics, Tanta University, Tanta, EgyptFaculty of Education, Department of Mathematics, Ain Shams University, Cairo, EgyptIn this paper, we investigated the minimax of the bifunction J:H1(Ω)xV2→RmxRn, such that J(v1,v2)=((12a(v1,v1)−L(v1)),v2) where a(.,.) is a finite symmetric bilinear bicontinuous, coercive form on H1(Ω) and L belongs to the dual of H1(Ω).http://dx.doi.org/10.1155/S0161171296000725Hilbert spacesdual spacesminimization of functionalsminimax pointsaddle pointconcave functionsconvex functionbicontinuous formcoercive form.
spellingShingle E. M. El-Kholy
Hanan Ali Abdou
On manimax theory in two Hilbert spaces
International Journal of Mathematics and Mathematical Sciences
Hilbert spaces
dual spaces
minimization of functionals
minimax point
saddle point
concave functions
convex function
bicontinuous form
coercive form.
title On manimax theory in two Hilbert spaces
title_full On manimax theory in two Hilbert spaces
title_fullStr On manimax theory in two Hilbert spaces
title_full_unstemmed On manimax theory in two Hilbert spaces
title_short On manimax theory in two Hilbert spaces
title_sort on manimax theory in two hilbert spaces
topic Hilbert spaces
dual spaces
minimization of functionals
minimax point
saddle point
concave functions
convex function
bicontinuous form
coercive form.
url http://dx.doi.org/10.1155/S0161171296000725
work_keys_str_mv AT emelkholy onmanimaxtheoryintwohilbertspaces
AT hananaliabdou onmanimaxtheoryintwohilbertspaces