On manimax theory in two Hilbert spaces
In this paper, we investigated the minimax of the bifunction J:H1(Ω)xV2→RmxRn, such that J(v1,v2)=((12a(v1,v1)−L(v1)),v2) where a(.,.) is a finite symmetric bilinear bicontinuous, coercive form on H1(Ω) and L belongs to the dual of H1(Ω).
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1996-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171296000725 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832548925712629760 |
---|---|
author | E. M. El-Kholy Hanan Ali Abdou |
author_facet | E. M. El-Kholy Hanan Ali Abdou |
author_sort | E. M. El-Kholy |
collection | DOAJ |
description | In this paper, we investigated the minimax of the bifunction
J:H1(Ω)xV2→RmxRn, such that
J(v1,v2)=((12a(v1,v1)−L(v1)),v2) where
a(.,.) is a finite symmetric bilinear bicontinuous, coercive form on H1(Ω) and L belongs to the
dual of H1(Ω). |
format | Article |
id | doaj-art-e67c263a6d9f4ce3a12a085e303c0f78 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1996-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-e67c263a6d9f4ce3a12a085e303c0f782025-02-03T06:12:46ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251996-01-0119352152810.1155/S0161171296000725On manimax theory in two Hilbert spacesE. M. El-Kholy0Hanan Ali Abdou1Faculty of Science, Department of Mathematics, Tanta University, Tanta, EgyptFaculty of Education, Department of Mathematics, Ain Shams University, Cairo, EgyptIn this paper, we investigated the minimax of the bifunction J:H1(Ω)xV2→RmxRn, such that J(v1,v2)=((12a(v1,v1)−L(v1)),v2) where a(.,.) is a finite symmetric bilinear bicontinuous, coercive form on H1(Ω) and L belongs to the dual of H1(Ω).http://dx.doi.org/10.1155/S0161171296000725Hilbert spacesdual spacesminimization of functionalsminimax pointsaddle pointconcave functionsconvex functionbicontinuous formcoercive form. |
spellingShingle | E. M. El-Kholy Hanan Ali Abdou On manimax theory in two Hilbert spaces International Journal of Mathematics and Mathematical Sciences Hilbert spaces dual spaces minimization of functionals minimax point saddle point concave functions convex function bicontinuous form coercive form. |
title | On manimax theory in two Hilbert spaces |
title_full | On manimax theory in two Hilbert spaces |
title_fullStr | On manimax theory in two Hilbert spaces |
title_full_unstemmed | On manimax theory in two Hilbert spaces |
title_short | On manimax theory in two Hilbert spaces |
title_sort | on manimax theory in two hilbert spaces |
topic | Hilbert spaces dual spaces minimization of functionals minimax point saddle point concave functions convex function bicontinuous form coercive form. |
url | http://dx.doi.org/10.1155/S0161171296000725 |
work_keys_str_mv | AT emelkholy onmanimaxtheoryintwohilbertspaces AT hananaliabdou onmanimaxtheoryintwohilbertspaces |