Adaptive Synchronization between Fractional-Order Chaotic Real and Complex Systems with Unknown Parameters
The complex modified projective synchronization (CMPS) between fractional-order chaotic real and complex systems is investigated for the first time. The parameters of both master and slave systems are assumed to be unknown in advance; moreover, the slave system is perturbed by unknown but bounded ex...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2014/484039 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The complex modified projective synchronization (CMPS) between fractional-order chaotic real and complex systems is investigated for the first time. The parameters of both master and slave systems are assumed to be unknown in advance; moreover, the slave system is perturbed by unknown but bounded external disturbances. The master and slave systems that achieved CMPS can be synchronized up to a complex constant matrix. On the basis of frequency distributed model of fractional integrator and Lyapunov stability theory, a robust adaptive control law is designed to realize the CMPS for two different types of fractional-order chaotic systems. Meanwhile, to deal with these unknown parameters, some fractional-order type parametric update laws are provided. An example is given to demonstrate the effectiveness and feasibility of the proposed synchronization scheme. |
---|---|
ISSN: | 1026-0226 1607-887X |