Efisiensi Big Data Menggunakan Improved Nearest Neighbor

Klasifikasi adalah salah satu metode penting dalam kajian data mining. Salah satu metode klasifikasi yang populer dan mendasar adalah k-nearest neighbor (kNN). Pada kNN, hubungan antar sampel diukur berdasarkan tingkat kesamaan yang direpresentasikan sebagai jarak. Pada kasus mayoritas terutama pad...

Full description

Saved in:
Bibliographic Details
Main Authors: Aditya Hari Bawono, Ahmad Afif Supianto
Format: Article
Language:Indonesian
Published: University of Brawijaya 2019-12-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/2085
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832086605437861888
author Aditya Hari Bawono
Ahmad Afif Supianto
author_facet Aditya Hari Bawono
Ahmad Afif Supianto
author_sort Aditya Hari Bawono
collection DOAJ
description Klasifikasi adalah salah satu metode penting dalam kajian data mining. Salah satu metode klasifikasi yang populer dan mendasar adalah k-nearest neighbor (kNN). Pada kNN, hubungan antar sampel diukur berdasarkan tingkat kesamaan yang direpresentasikan sebagai jarak. Pada kasus mayoritas terutama pada data berukuran besar, akan terdapat beberapa sampel yang memiliki jarak yang sama namun amat mungkin tidak terpilih menjadi tetangga, maka pemilihan parameter k akan sangat mempengaruhi hasil klasifikasi kNN. Selain itu, pengurutan pada kNN menjadi masalah komputasi ketika dilakukan pada data berukuran besar. Dalam usaha mengatasi klasifikasi data berukuran besar dibutuhkan metode yang lebih akurat dan efisien. Dependent Nearest Neighbor (dNN) sebagai metode yang diajukan dalam penelitian ini tidak menggunakan parameter k dan tidak ada proses pengurutan sampel. Hasil percobaan menunjukkan bahwa dNN dapat menghasilkan efisiensi waktu sebesar 3 kali lipat lebih cepat daripada kNN. Perbandingan akurasi dNN adalah 13% lebih baik daripada kNN. Abstract Classification is one of the important methods of data mining. One of the most popular and basic classification methods is k-nearest neighbor (kNN). In kNN, the relationships between samples are measured by the degree of similarity represented as distance. In major cases, especially on big data, there will be some samples that have the same distance but may not be selected as neighbors, then the selection of k parameters will greatly affect the results of kNN classification. Sorting phase of kNN becomes a computation problem when it is done on big data. In the effort to overcome the classification of big data a more accurate and efficient method is required. Dependent Nearest Neighbor (dNN) as method proposed in this study did not use the k parameters and no sample at the sorting phase. The proposed method resulted in 3 times faster than kNN. The accuracy of the proposed method is13% better results than kNN.  
format Article
id doaj-art-e65e5d1d15bc4256affbfe5db32cb097
institution Kabale University
issn 2355-7699
2528-6579
language Indonesian
publishDate 2019-12-01
publisher University of Brawijaya
record_format Article
series Jurnal Teknologi Informasi dan Ilmu Komputer
spelling doaj-art-e65e5d1d15bc4256affbfe5db32cb0972025-02-06T10:42:13ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792019-12-016610.25126/jtiik.2019662085549Efisiensi Big Data Menggunakan Improved Nearest NeighborAditya Hari Bawono0Ahmad Afif Supianto1Fakultas Ilmu Komputer - Universitas BrawijayaFakultas Ilmu Komputer - Universitas Brawijaya Klasifikasi adalah salah satu metode penting dalam kajian data mining. Salah satu metode klasifikasi yang populer dan mendasar adalah k-nearest neighbor (kNN). Pada kNN, hubungan antar sampel diukur berdasarkan tingkat kesamaan yang direpresentasikan sebagai jarak. Pada kasus mayoritas terutama pada data berukuran besar, akan terdapat beberapa sampel yang memiliki jarak yang sama namun amat mungkin tidak terpilih menjadi tetangga, maka pemilihan parameter k akan sangat mempengaruhi hasil klasifikasi kNN. Selain itu, pengurutan pada kNN menjadi masalah komputasi ketika dilakukan pada data berukuran besar. Dalam usaha mengatasi klasifikasi data berukuran besar dibutuhkan metode yang lebih akurat dan efisien. Dependent Nearest Neighbor (dNN) sebagai metode yang diajukan dalam penelitian ini tidak menggunakan parameter k dan tidak ada proses pengurutan sampel. Hasil percobaan menunjukkan bahwa dNN dapat menghasilkan efisiensi waktu sebesar 3 kali lipat lebih cepat daripada kNN. Perbandingan akurasi dNN adalah 13% lebih baik daripada kNN. Abstract Classification is one of the important methods of data mining. One of the most popular and basic classification methods is k-nearest neighbor (kNN). In kNN, the relationships between samples are measured by the degree of similarity represented as distance. In major cases, especially on big data, there will be some samples that have the same distance but may not be selected as neighbors, then the selection of k parameters will greatly affect the results of kNN classification. Sorting phase of kNN becomes a computation problem when it is done on big data. In the effort to overcome the classification of big data a more accurate and efficient method is required. Dependent Nearest Neighbor (dNN) as method proposed in this study did not use the k parameters and no sample at the sorting phase. The proposed method resulted in 3 times faster than kNN. The accuracy of the proposed method is13% better results than kNN.   https://jtiik.ub.ac.id/index.php/jtiik/article/view/2085
spellingShingle Aditya Hari Bawono
Ahmad Afif Supianto
Efisiensi Big Data Menggunakan Improved Nearest Neighbor
Jurnal Teknologi Informasi dan Ilmu Komputer
title Efisiensi Big Data Menggunakan Improved Nearest Neighbor
title_full Efisiensi Big Data Menggunakan Improved Nearest Neighbor
title_fullStr Efisiensi Big Data Menggunakan Improved Nearest Neighbor
title_full_unstemmed Efisiensi Big Data Menggunakan Improved Nearest Neighbor
title_short Efisiensi Big Data Menggunakan Improved Nearest Neighbor
title_sort efisiensi big data menggunakan improved nearest neighbor
url https://jtiik.ub.ac.id/index.php/jtiik/article/view/2085
work_keys_str_mv AT adityaharibawono efisiensibigdatamenggunakanimprovednearestneighbor
AT ahmadafifsupianto efisiensibigdatamenggunakanimprovednearestneighbor