Enhanced Resistive Switching and Conduction Mechanisms in Silk Fibroin-Based Memristors with Ag Nanoparticles for Bio-Neuromorphic Applications

This study explores the resistive switching (RS) behavior and conduction mechanisms of Ag/SF-Ag NP/Si memristors with varying Ag NP concentrations. I-V measurements confirm stable RS characteristics across 100 cycles, with consistent set and reset voltages. Increasing Ag NP concentration enhances co...

Full description

Saved in:
Bibliographic Details
Main Authors: Jongyun Choi, Seung Hun Lee, Taehun Kim, Kyungtaek Min, Sung-Nam Lee
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/7/517
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores the resistive switching (RS) behavior and conduction mechanisms of Ag/SF-Ag NP/Si memristors with varying Ag NP concentrations. I-V measurements confirm stable RS characteristics across 100 cycles, with consistent set and reset voltages. Increasing Ag NP concentration enhances conductive filament formation, leading to sharper switching transitions and a higher HRS/LRS ratio, w-hich increases from 43 (0 wt% Ag NP) to 4.6 × 10<sup>4</sup> (10 wt% Ag NP). Log(I)-log(V) analysis reveals a conduction transition from Ohmic to Poole–Frenkel mechanisms, indicating improved charge percolation. Reliability tests show stable LRS values, while HRS exhibits greater variation at higher Ag NP concentrations. These results demonstrate that Ag NPs play a crucial role in optimizing memristor performance, improving switching characteristics, and enhancing reliability. The findings suggest that Ag/SF-Ag NP/Si memristors are promising for high-performance resistive memory and neuromorphic computing applications.
ISSN:2079-4991