Enhanced Resistive Switching and Conduction Mechanisms in Silk Fibroin-Based Memristors with Ag Nanoparticles for Bio-Neuromorphic Applications
This study explores the resistive switching (RS) behavior and conduction mechanisms of Ag/SF-Ag NP/Si memristors with varying Ag NP concentrations. I-V measurements confirm stable RS characteristics across 100 cycles, with consistent set and reset voltages. Increasing Ag NP concentration enhances co...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/15/7/517 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study explores the resistive switching (RS) behavior and conduction mechanisms of Ag/SF-Ag NP/Si memristors with varying Ag NP concentrations. I-V measurements confirm stable RS characteristics across 100 cycles, with consistent set and reset voltages. Increasing Ag NP concentration enhances conductive filament formation, leading to sharper switching transitions and a higher HRS/LRS ratio, w-hich increases from 43 (0 wt% Ag NP) to 4.6 × 10<sup>4</sup> (10 wt% Ag NP). Log(I)-log(V) analysis reveals a conduction transition from Ohmic to Poole–Frenkel mechanisms, indicating improved charge percolation. Reliability tests show stable LRS values, while HRS exhibits greater variation at higher Ag NP concentrations. These results demonstrate that Ag NPs play a crucial role in optimizing memristor performance, improving switching characteristics, and enhancing reliability. The findings suggest that Ag/SF-Ag NP/Si memristors are promising for high-performance resistive memory and neuromorphic computing applications. |
|---|---|
| ISSN: | 2079-4991 |