Station Maintenance for Low-Orbit Large-Scale Constellations Based on Absolute and Relative Control Strategies

With the development of commercial space technology and the proposal of concepts such as “Black Jack”, the Space Transport Layer (STL), and the commercial space-based Internet, large-scale low-orbit satellite constellations have become a research hotspot in the aerospace field. Large-scale low-orbit...

Full description

Saved in:
Bibliographic Details
Main Authors: Min Hu, Feifei Li, Wen Xue, Chenhu Liu, Wen Guo, Yongjing Ruan
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/9/4640
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the development of commercial space technology and the proposal of concepts such as “Black Jack”, the Space Transport Layer (STL), and the commercial space-based Internet, large-scale low-orbit satellite constellations have become a research hotspot in the aerospace field. Large-scale low-orbit satellite constellations consist of a huge number of satellites, which makes the networking control and operation management of the constellations more complicated. It also increases the difficulty of achieving the economical and efficient networking of the constellations as well as ensuring their safe and stable operation. In this study, aiming at the problem of large-scale constellation phase control in low orbit, strategies for constellation station holding were examined. First, aiming at the problem of station keeping of large-scale constellations in low orbit, the characteristics of satellite phase drift and phase keeping were analyzed, and absolute and relative station-keeping strategies were proposed. Second, a phase-holding loop control method combining semi-major axis overshoot control and passive control was proposed, and a relative phase-maintenance scheme based on a dynamic reference satellite was designed. Then, the absolute and relative station controls of different low-orbit constellations were simulated. The simulation results showed that in order for all satellites in the constellation to maintain a phase angle deviation within ±0.1° in a low-solar-activity year, about 13 days were required on average to adjust the semi-major axis of the satellites by about 71 m. The relative position control of small-scale constellations was simulated, and only four orbital maneuvers were needed to achieve the phase angle maintenance within the threshold of ±5° for all satellites in the constellation within 300 days. Finally, it was concluded that absolute control was suitable for large-scale constellation phase preservation, and relative control was more suitable for small-scale constellation phase preservation. This paper can provide a reference and suggestions for future large-scale constellation deployment and maintenance control strategies of low-orbit constellations.
ISSN:2076-3417