Rainbow: An Operating System for Software-Hardware Multitasking on Dynamically Partially Reconfigurable FPGAs

Dynamic Partial Reconfiguration technology coupled with an Operating System for Reconfigurable Systems (OS4RS) allows for implementation of a hardware task concept, that is, an active computing object which can contend for reconfigurable computing resources and request OS services in a way software...

Full description

Saved in:
Bibliographic Details
Main Authors: Krzysztof Jozwik, Shinya Honda, Masato Edahiro, Hiroyuki Tomiyama, Hiroaki Takada
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:International Journal of Reconfigurable Computing
Online Access:http://dx.doi.org/10.1155/2013/789134
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dynamic Partial Reconfiguration technology coupled with an Operating System for Reconfigurable Systems (OS4RS) allows for implementation of a hardware task concept, that is, an active computing object which can contend for reconfigurable computing resources and request OS services in a way software task does in a conventional OS. In this work, we show a complete model and implementation of a lightweight OS4RS supporting preemptable and clock-scalable hardware tasks. We also propose a novel, lightweight scheduling mechanism allowing for timely and priority-based reservation of reconfigurable resources, which aims at usage of preemption only at the time it brings benefits to the performance of a system. The architecture of the scheduler and the way it schedules allocations of the hardware tasks result in shorter latency of system calls, thereby reducing the overall OS overhead. Finally, we present a novel model and implementation of a channel-based intertask communication and synchronization suitable for software-hardware multitasking with preemptable and clock-scalable hardware tasks. It allows for optimizations of the communication on per task basis and utilizes point-to-point message passing rather than shared-memory communication, whenever it is possible. Extensive overhead tests of the OS4RS services as well as application speedup tests show efficiency of our approach.
ISSN:1687-7195
1687-7209