Assembly and comparative analysis of the complete mitochondrial of Spodiopogon sagittifolius, an endemic and protective species from Yunnan, China

Abstract Background Spodiopogon sagittifolius, a C4 plant closely related to cultivated crops, is an edible resource and a Class II nationally protected species in China. Endemic to Yunnan, its populations are declining due to habitat destruction, highlighting its resource and conservation importanc...

Full description

Saved in:
Bibliographic Details
Main Authors: Chao Xu, Wei Bi, Ren-yi Ma, Pin-rong Li, Feng Liu, Zhen-wen Liu
Format: Article
Language:English
Published: BMC 2025-03-01
Series:BMC Plant Biology
Subjects:
Online Access:https://doi.org/10.1186/s12870-025-06341-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Spodiopogon sagittifolius, a C4 plant closely related to cultivated crops, is an edible resource and a Class II nationally protected species in China. Endemic to Yunnan, its populations are declining due to habitat destruction, highlighting its resource and conservation importance. Despite its significance, the molecular phylogenetic relationships and genetic mechanisms of adaptive evolution in the genus Spodiopogon remain poorly understood. Results We successfully assembled and annotated the first mitochondrial genome of S. sagittifolius using HiFi sequencing and the PMAT tool. The genome is 500,699 bp in length with a GC content of 43.15%. Synteny and dN/dS analyses revealed structural and functional conservation of mitochondrial genomes in closely related species, with most protein-coding genes under purifying selection (dN/dS < 1). Notably, nad2 exhibited signs of positive selection (dN/dS = 1.49), indicating potential adaptive evolution. Extensive RNA editing events were detected across 27 protein-coding genes, predominantly involving C-to-U conversions, with synonymous mutations accounting for 49.65% of the edits. Strong codon usage bias favoring A/U-ending codons and the identification of repeat sequences suggest enhanced mitochondrial efficiency and stress adaptation. Phylogenetic analyses confirmed the taxonomic placement of S. sagittifolius within the Andropogoneae tribe. Conclusions This study provides the first insights into the mitochondrial genome evolution of S. sagittifolius, highlighting key features linked to stress tolerance and adaptive evolution. These findings establish a foundation for its conservation and potential domestication, with implications for crop improvement and ecological resilience.
ISSN:1471-2229