Problemas desbalanceados en el aprendizaje profundo
El contenido de este trabajo está centrado en la obtención de resultados, que demuestren la eficiencia de los modelos de aprendizaje profundo con estrategias para la solución al desbalance de la información en la detección de anomalías, en específico, en la detección de fraude de tarjeta de crédito....
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | Spanish |
| Published: |
Universidad de las Ciencias Informáticas (UCI)
2022-06-01
|
| Series: | Serie Científica de la Universidad de las Ciencias Informáticas |
| Subjects: | |
| Online Access: | https://publicaciones.uci.cu/index.php/serie/article/view/1080 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850220819968425984 |
|---|---|
| author | Odeynis Valdés Suárez Héctor Raúl González Diez |
| author_facet | Odeynis Valdés Suárez Héctor Raúl González Diez |
| author_sort | Odeynis Valdés Suárez |
| collection | DOAJ |
| description | El contenido de este trabajo está centrado en la obtención de resultados, que demuestren la eficiencia de los modelos de aprendizaje profundo con estrategias para la solución al desbalance de la información en la detección de anomalías, en específico, en la detección de fraude de tarjeta de crédito. Para ello se realiza una fundamentación previa de los conceptos básicos relacionados con este campo de estudio, ya sean los avances y retos que presenta, así como las métricas, herramientas y tecnologías que se usan para su estudio, metodología y otras técnicas que se usan. Se definen las soluciones al problema del desbalance de la información a utilizar, se eligen los modelos de Deep Learning para realizar la detección de fraude de tarjeta de crédito, además de definir su estructura. Con estos modelos definidos se realizan las evaluaciones y comparaciones correspondientes para comprobar su efectividad mediante las métricas definidas, lo que va a permitir sentar las bases para la obtención de resultados concluyentes con respecto a la efectividad de los modelos, los cuales son el resultado final de este artículo. |
| format | Article |
| id | doaj-art-e5b03b6012244b1bbf655b10d8a4ddcb |
| institution | OA Journals |
| issn | 2306-2495 |
| language | Spanish |
| publishDate | 2022-06-01 |
| publisher | Universidad de las Ciencias Informáticas (UCI) |
| record_format | Article |
| series | Serie Científica de la Universidad de las Ciencias Informáticas |
| spelling | doaj-art-e5b03b6012244b1bbf655b10d8a4ddcb2025-08-20T02:06:54ZspaUniversidad de las Ciencias Informáticas (UCI)Serie Científica de la Universidad de las Ciencias Informáticas2306-24952022-06-0115618341080Problemas desbalanceados en el aprendizaje profundoOdeynis Valdés SuárezHéctor Raúl González DiezEl contenido de este trabajo está centrado en la obtención de resultados, que demuestren la eficiencia de los modelos de aprendizaje profundo con estrategias para la solución al desbalance de la información en la detección de anomalías, en específico, en la detección de fraude de tarjeta de crédito. Para ello se realiza una fundamentación previa de los conceptos básicos relacionados con este campo de estudio, ya sean los avances y retos que presenta, así como las métricas, herramientas y tecnologías que se usan para su estudio, metodología y otras técnicas que se usan. Se definen las soluciones al problema del desbalance de la información a utilizar, se eligen los modelos de Deep Learning para realizar la detección de fraude de tarjeta de crédito, además de definir su estructura. Con estos modelos definidos se realizan las evaluaciones y comparaciones correspondientes para comprobar su efectividad mediante las métricas definidas, lo que va a permitir sentar las bases para la obtención de resultados concluyentes con respecto a la efectividad de los modelos, los cuales son el resultado final de este artículo.https://publicaciones.uci.cu/index.php/serie/article/view/1080modelos de aprendizaje profundo, detección de fraude de tarjeta de crédito, detección de anomalías, problema del desbalance de la información. |
| spellingShingle | Odeynis Valdés Suárez Héctor Raúl González Diez Problemas desbalanceados en el aprendizaje profundo Serie Científica de la Universidad de las Ciencias Informáticas modelos de aprendizaje profundo, detección de fraude de tarjeta de crédito, detección de anomalías, problema del desbalance de la información. |
| title | Problemas desbalanceados en el aprendizaje profundo |
| title_full | Problemas desbalanceados en el aprendizaje profundo |
| title_fullStr | Problemas desbalanceados en el aprendizaje profundo |
| title_full_unstemmed | Problemas desbalanceados en el aprendizaje profundo |
| title_short | Problemas desbalanceados en el aprendizaje profundo |
| title_sort | problemas desbalanceados en el aprendizaje profundo |
| topic | modelos de aprendizaje profundo, detección de fraude de tarjeta de crédito, detección de anomalías, problema del desbalance de la información. |
| url | https://publicaciones.uci.cu/index.php/serie/article/view/1080 |
| work_keys_str_mv | AT odeynisvaldessuarez problemasdesbalanceadosenelaprendizajeprofundo AT hectorraulgonzalezdiez problemasdesbalanceadosenelaprendizajeprofundo |