Electrochemical Behavior of CsI in LiCl Molten Salt

The electrochemical behavior of CsI in LiCl molten salt was investigated to identify its impact on the electrolytic oxide reduction of oxide-phase spent nuclear fuels by combined electrolysis and cyclic voltammetry experiments of LiCl-CsI in comparison with LiCl, LiCl-CsCl, and LiCl-LiI. It was foun...

Full description

Saved in:
Bibliographic Details
Main Authors: Sung-Wook Kim, Sang-Kwon Lee, Min Ku Jeon, Eun-Young Choi
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Science and Technology of Nuclear Installations
Online Access:http://dx.doi.org/10.1155/2020/8852351
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electrochemical behavior of CsI in LiCl molten salt was investigated to identify its impact on the electrolytic oxide reduction of oxide-phase spent nuclear fuels by combined electrolysis and cyclic voltammetry experiments of LiCl-CsI in comparison with LiCl, LiCl-CsCl, and LiCl-LiI. It was found that Cs+ ions were hardly involved in the cathode reaction, and reduction of Li+ ions occurred dominantly in the cathode. In contrast, incorporation of I− ions induced low-potential anode reaction compared with the I− ion-free cases. Such additional electrochemical reaction resulted in the generation of I2 and/or ICl gases, which would increase a process burden for treating 129I with exceptionally long lifetime. In this respect, separating CsI from spent nuclear fuel before the electrolytic oxide reduction is recommended for the purpose of efficient waste management.
ISSN:1687-6075
1687-6083