Parametrically excited nonlinear systems: a comparison of two methods

Subharmonic resonance of two-degree-of-freedom systems with cubic nonlinearities to multifrequency parametric excitations in the presence of three-to-one internal resonance is investigated. Two approximate methods (the multiple scales and the generalized synchronization) are used to construct a firs...

Full description

Saved in:
Bibliographic Details
Main Author: A. F. El-Bassiouny
Format: Article
Language:English
Published: Wiley 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171202007019
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Subharmonic resonance of two-degree-of-freedom systems with cubic nonlinearities to multifrequency parametric excitations in the presence of three-to-one internal resonance is investigated. Two approximate methods (the multiple scales and the generalized synchronization) are used to construct a first-order nonlinear ordinary differential equations governing the modulation of the amplitudes and phases. Steady state solutions and their stability are computed for selected values of the system parameters. The results obtained by the two methods are in excellent agreement. Numerical solutions are carried out and graphical representations of the results are presented and discussed.
ISSN:0161-1712
1687-0425