Offloaded Computation for QoS Routing in Wireless Sensor Networks

In Wireless Sensor Networks (WSNs) used for real-time applications, ensuring Quality of Service (QoS) is essential for maintaining end-to-end performance guarantees. QoS requirements are typically defined by a set of end-to-end constraints, including delay, jitter, and packet loss. In multi-hop scen...

Full description

Saved in:
Bibliographic Details
Main Authors: Basma Mostafa, Miklos Molnar
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/16/6/464
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In Wireless Sensor Networks (WSNs) used for real-time applications, ensuring Quality of Service (QoS) is essential for maintaining end-to-end performance guarantees. QoS requirements are typically defined by a set of end-to-end constraints, including delay, jitter, and packet loss. In multi-hop scenarios, this requires multi-constrained path computation. This research examines the standard Routing Protocol for Low-Power and Lossy Networks (RPL), which employs a Destination-Oriented Directed Acyclic Graph (DODAG) for data transmission. Nonetheless, there are several challenges related to multi-constrained route computation in the RPL: (1) The DODAG originates from an objective function that cannot manage multiple constraints. (2) The process of computing multi-constrained routes is resource-intensive, even for a single path. (3) The collection of QoS-compatible paths does not necessarily form a DODAG. To address these challenges, this paper suggests modifications to the existing protocols that shift computationally demanding tasks to edge servers. Such a strategic adjustment allows for the implementation of QoS-compatible route computation in WSNs using the RPL. It enhances their ability to meet increasingly stringent demands for QoS in numerous application environments.
ISSN:2078-2489