Formal Lagrangian Operad

Given a symplectic manifold M, we may define an operad structure on the the spaces Ok of the Lagrangian submanifolds of (M¯)k×M via symplectic reduction. If M is also a symplectic groupoid, then its multiplication space is an associative product in this operad. Following this idea, we provide a defo...

Full description

Saved in:
Bibliographic Details
Main Authors: Alberto S. Cattaneo, Benoit Dherin, Giovanni Felder
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2010/643605
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548434514542592
author Alberto S. Cattaneo
Benoit Dherin
Giovanni Felder
author_facet Alberto S. Cattaneo
Benoit Dherin
Giovanni Felder
author_sort Alberto S. Cattaneo
collection DOAJ
description Given a symplectic manifold M, we may define an operad structure on the the spaces Ok of the Lagrangian submanifolds of (M¯)k×M via symplectic reduction. If M is also a symplectic groupoid, then its multiplication space is an associative product in this operad. Following this idea, we provide a deformation theory for symplectic groupoids analog to the deformation theory of algebras. It turns out that the semiclassical part of Kontsevich's deformation of C∞(ℝd) is a deformation of the trivial symplectic groupoid structure of T∗ℝd.
format Article
id doaj-art-e52427db8fe44dfba83378d471146c21
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2010-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-e52427db8fe44dfba83378d471146c212025-02-03T06:14:07ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252010-01-01201010.1155/2010/643605643605Formal Lagrangian OperadAlberto S. Cattaneo0Benoit Dherin1Giovanni Felder2Institut für Mathematik, Universität Zürich—Irchel, Winterthurerstraße 190, 8057 Zürich, SwitzerlandDepartment of Mathematics, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The NetherlandsD-MATH, ETH-Zentrum, 8092 Zürich, SwitzerlandGiven a symplectic manifold M, we may define an operad structure on the the spaces Ok of the Lagrangian submanifolds of (M¯)k×M via symplectic reduction. If M is also a symplectic groupoid, then its multiplication space is an associative product in this operad. Following this idea, we provide a deformation theory for symplectic groupoids analog to the deformation theory of algebras. It turns out that the semiclassical part of Kontsevich's deformation of C∞(ℝd) is a deformation of the trivial symplectic groupoid structure of T∗ℝd.http://dx.doi.org/10.1155/2010/643605
spellingShingle Alberto S. Cattaneo
Benoit Dherin
Giovanni Felder
Formal Lagrangian Operad
International Journal of Mathematics and Mathematical Sciences
title Formal Lagrangian Operad
title_full Formal Lagrangian Operad
title_fullStr Formal Lagrangian Operad
title_full_unstemmed Formal Lagrangian Operad
title_short Formal Lagrangian Operad
title_sort formal lagrangian operad
url http://dx.doi.org/10.1155/2010/643605
work_keys_str_mv AT albertoscattaneo formallagrangianoperad
AT benoitdherin formallagrangianoperad
AT giovannifelder formallagrangianoperad