Hierarchical Modeling and Dynamic Analysis of Hoist System in Electric Mining Shovel

The hoist system of electric mining shovel (EMS) always encounters excessive vibration in present work. However, the shortage of suitable dynamic model has been the bottleneck of reducing vibration. In order to analyze the vibration of the EMS hoist system, a coupled dynamic model is proposed using...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Sun, Jianan Du, Lintao Wang, Penglong Luan, Jie li
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2018/5017564
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hoist system of electric mining shovel (EMS) always encounters excessive vibration in present work. However, the shortage of suitable dynamic model has been the bottleneck of reducing vibration. In order to analyze the vibration of the EMS hoist system, a coupled dynamic model is proposed using the hierarchical modeling method, which contains couplings of bolt, bear, coupling, rope, and gear mesh. The components were equivalent to mass elements with several nodes corresponding to their structure. Considered helical gears and motors, a dynamic gear transmission model with couplings of bending, torsion, and axes was developed. Based on the dynamic model, the modal characteristics were calculated, and the vibration modes were classified to five types. Under the ripple drive torque simulated by Simulink, the dynamic characteristics of the hoist system in time domain and frequency domain were obtained using numerical integration with the Runge–Kutta method in Matlab. At last, the model validity was verified by contrasting the responses under actual test and the model. The dynamic model and study results can provide support for dynamic characteristic evaluation and dynamic optimization of the EMS hoist system.
ISSN:1070-9622
1875-9203