Agricultural Technology for Phytophage and Phytopathogen Resistant Planting Material

Many seedlings die early during reforestation. Traditional bareroot technologies often fail in Western Siberia. As a result, containerized technologies have become relevant as they provide higher survival rate in the harsh climatic conditions. The study traced the development of Scots pine (Pinus sy...

Full description

Saved in:
Bibliographic Details
Main Authors: Evgenia A. Dyukova, Ekaterina G. Ulyanova, Maria A. Osintseva, Victoria A. Kryuk
Format: Article
Language:English
Published: Kemerovo State University 2023-12-01
Series:Техника и технология пищевых производств
Subjects:
Online Access:https://fptt.ru/en/issues/22269/22255/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many seedlings die early during reforestation. Traditional bareroot technologies often fail in Western Siberia. As a result, containerized technologies have become relevant as they provide higher survival rate in the harsh climatic conditions. The study traced the development of Scots pine (Pinus sylvestris L.) seedlings grown in a container nursery in the Kemerovo Region. The milled high-moor peat had a degree of decomposition of ≤ 15%. The seeds were treated with fungicides before planting. The seedlings underwent a double treatment against phytophages and phytopathogens during growth. The article introduces a new agricultural technology for ball-rooted planting stock resistant to phytophages and phytopathogens. The study revealed the developmental stages of pine seedlings and the effect of pesticides on pathogen count. After phytosanitary monitoring and preventive treatments, the seedlings were tested for the effectiveness of pesticides, fungicides, and insecticides as part of pre-planting seed treatment. Such biochemical preparations as Fitoverm (0.4%), Decis Pro, Previkur Energy, and Fitosporin increased the survival rate of the test seedlings. The biological effectiveness of the experimental treatment was 49–53 and 44–50%. The technology was able to improve the survival rate of pine seedlings in forest container nurseries in the harsh climate of West Siberia.
ISSN:2074-9414
2313-1748