Rotationally Induced Local Heat Transfer Features in a Two-Pass Cooling Channel: Experimental–Numerical Investigation

Turbine blades for modern turbomachinery applications often exhibit complex twisted designs that aim to reduce aerodynamic losses, thereby improving the overall machine performance. This results in intricate internal cooling configurations that change their spanwise orientation with respect to the r...

Full description

Saved in:
Bibliographic Details
Main Authors: David Gutiérrez de Arcos, Christian Waidmann, Rico Poser, Jens von Wolfersdorf, Michael Göhring
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:International Journal of Turbomachinery, Propulsion and Power
Subjects:
Online Access:https://www.mdpi.com/2504-186X/9/4/34
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850241053633806336
author David Gutiérrez de Arcos
Christian Waidmann
Rico Poser
Jens von Wolfersdorf
Michael Göhring
author_facet David Gutiérrez de Arcos
Christian Waidmann
Rico Poser
Jens von Wolfersdorf
Michael Göhring
author_sort David Gutiérrez de Arcos
collection DOAJ
description Turbine blades for modern turbomachinery applications often exhibit complex twisted designs that aim to reduce aerodynamic losses, thereby improving the overall machine performance. This results in intricate internal cooling configurations that change their spanwise orientation with respect to the rotational axis. In the present study, the local heat transfer in a generic two-pass turbine cooling channel is investigated under engine-similar rotating conditions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>o</mi><mo>=</mo><mo>{</mo><mn>0</mn><mspace width="0.166667em"></mspace><mo>…</mo><mspace width="0.166667em"></mspace><mn>0.50</mn><mo>}</mo></mrow></semantics></math></inline-formula>) through the transient Thermochromic Liquid Crystal (TLC) measurement technique. Three different angles of attack (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mo>{</mo><mo>−</mo><msup><mn>18.5</mn><mo>°</mo></msup><mspace width="0.222222em"></mspace><mo>;</mo><mspace width="0.222222em"></mspace><mo>+</mo><msup><mn>8</mn><mo>°</mo></msup><mspace width="0.222222em"></mspace><mo>;</mo><mspace width="0.222222em"></mspace><mo>+</mo><msup><mn>46.5</mn><mo>°</mo></msup><mo>}</mo></mrow></semantics></math></inline-formula>) are investigated to emulate the heat transfer characteristics in an internal cooling channel of a real turbine blade application at different spanwise positions. A numerical approach based on steady-state Reynolds-averaged Navier–Stokes (RANS) simulations in ANSYS CFX is validated against the experimental method, showing generally good agreement and, thus, qualifying for future heat transfer predictions. Experimental and numerical data clearly demonstrate the substantial impact of the angle of attack on the local heat transfer structure, especially for the radially outward flow of the first passage, owing to the particular Coriolis force direction at each angle of attack. Furthermore, results underscore the strong influence of the rotational speed on the overall heat transfer level, with an enhancement effect for the radially outward flow (first passage) and a reduction effect for the radially inward flow (second passage).
format Article
id doaj-art-e4ef093ff5494b2a8e373644e07b81b3
institution OA Journals
issn 2504-186X
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series International Journal of Turbomachinery, Propulsion and Power
spelling doaj-art-e4ef093ff5494b2a8e373644e07b81b32025-08-20T02:00:42ZengMDPI AGInternational Journal of Turbomachinery, Propulsion and Power2504-186X2024-11-01943410.3390/ijtpp9040034Rotationally Induced Local Heat Transfer Features in a Two-Pass Cooling Channel: Experimental–Numerical InvestigationDavid Gutiérrez de Arcos0Christian Waidmann1Rico Poser2Jens von Wolfersdorf3Michael Göhring4Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, GermanyInstitute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, GermanyInstitute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, GermanyInstitute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, GermanyInstitute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, GermanyTurbine blades for modern turbomachinery applications often exhibit complex twisted designs that aim to reduce aerodynamic losses, thereby improving the overall machine performance. This results in intricate internal cooling configurations that change their spanwise orientation with respect to the rotational axis. In the present study, the local heat transfer in a generic two-pass turbine cooling channel is investigated under engine-similar rotating conditions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>o</mi><mo>=</mo><mo>{</mo><mn>0</mn><mspace width="0.166667em"></mspace><mo>…</mo><mspace width="0.166667em"></mspace><mn>0.50</mn><mo>}</mo></mrow></semantics></math></inline-formula>) through the transient Thermochromic Liquid Crystal (TLC) measurement technique. Three different angles of attack (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mo>{</mo><mo>−</mo><msup><mn>18.5</mn><mo>°</mo></msup><mspace width="0.222222em"></mspace><mo>;</mo><mspace width="0.222222em"></mspace><mo>+</mo><msup><mn>8</mn><mo>°</mo></msup><mspace width="0.222222em"></mspace><mo>;</mo><mspace width="0.222222em"></mspace><mo>+</mo><msup><mn>46.5</mn><mo>°</mo></msup><mo>}</mo></mrow></semantics></math></inline-formula>) are investigated to emulate the heat transfer characteristics in an internal cooling channel of a real turbine blade application at different spanwise positions. A numerical approach based on steady-state Reynolds-averaged Navier–Stokes (RANS) simulations in ANSYS CFX is validated against the experimental method, showing generally good agreement and, thus, qualifying for future heat transfer predictions. Experimental and numerical data clearly demonstrate the substantial impact of the angle of attack on the local heat transfer structure, especially for the radially outward flow of the first passage, owing to the particular Coriolis force direction at each angle of attack. Furthermore, results underscore the strong influence of the rotational speed on the overall heat transfer level, with an enhancement effect for the radially outward flow (first passage) and a reduction effect for the radially inward flow (second passage).https://www.mdpi.com/2504-186X/9/4/34convective heat transferturbine bladeinternal coolingrotating test rigthermochromic liquid crystalscomputational fluid dynamics
spellingShingle David Gutiérrez de Arcos
Christian Waidmann
Rico Poser
Jens von Wolfersdorf
Michael Göhring
Rotationally Induced Local Heat Transfer Features in a Two-Pass Cooling Channel: Experimental–Numerical Investigation
International Journal of Turbomachinery, Propulsion and Power
convective heat transfer
turbine blade
internal cooling
rotating test rig
thermochromic liquid crystals
computational fluid dynamics
title Rotationally Induced Local Heat Transfer Features in a Two-Pass Cooling Channel: Experimental–Numerical Investigation
title_full Rotationally Induced Local Heat Transfer Features in a Two-Pass Cooling Channel: Experimental–Numerical Investigation
title_fullStr Rotationally Induced Local Heat Transfer Features in a Two-Pass Cooling Channel: Experimental–Numerical Investigation
title_full_unstemmed Rotationally Induced Local Heat Transfer Features in a Two-Pass Cooling Channel: Experimental–Numerical Investigation
title_short Rotationally Induced Local Heat Transfer Features in a Two-Pass Cooling Channel: Experimental–Numerical Investigation
title_sort rotationally induced local heat transfer features in a two pass cooling channel experimental numerical investigation
topic convective heat transfer
turbine blade
internal cooling
rotating test rig
thermochromic liquid crystals
computational fluid dynamics
url https://www.mdpi.com/2504-186X/9/4/34
work_keys_str_mv AT davidgutierrezdearcos rotationallyinducedlocalheattransferfeaturesinatwopasscoolingchannelexperimentalnumericalinvestigation
AT christianwaidmann rotationallyinducedlocalheattransferfeaturesinatwopasscoolingchannelexperimentalnumericalinvestigation
AT ricoposer rotationallyinducedlocalheattransferfeaturesinatwopasscoolingchannelexperimentalnumericalinvestigation
AT jensvonwolfersdorf rotationallyinducedlocalheattransferfeaturesinatwopasscoolingchannelexperimentalnumericalinvestigation
AT michaelgohring rotationallyinducedlocalheattransferfeaturesinatwopasscoolingchannelexperimentalnumericalinvestigation