Filamentation protects Candida albicans from amphotericin B-induced programmed cell death via a mechanism involving the yeast metacaspase, MCA1

The budding yeast Candida albicans is one of the most significant fungal pathogens worldwide. It proliferates in two distinct cell types: blastopores and filaments. Only cells that are able to transform from one cell type into the other are virulent in mouse disease models. Programmed cell death is...

Full description

Saved in:
Bibliographic Details
Main Authors: David J. Laprade, Melissa S. Brown, Morgan L. McCarthy, James J. Ritch, Nicanor Austriaco
Format: Article
Language:English
Published: Shared Science Publishers OG 2016-04-01
Series:Microbial Cell
Subjects:
Online Access:http://microbialcell.com/researcharticles/filamentation-protects-candida-albicans-from-amphotericin-b-induced-programmed-cell-death-via-a-mechanism-involving-the-yeast-metacaspase-mca1/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The budding yeast Candida albicans is one of the most significant fungal pathogens worldwide. It proliferates in two distinct cell types: blastopores and filaments. Only cells that are able to transform from one cell type into the other are virulent in mouse disease models. Programmed cell death is a controlled form of cell suicide that occurs when C. albicans cells are exposed to fungicidal drugs like amphotericin B and caspofungin, and to other stressful conditions. We now provide evidence that suggests that programmed cell death is cell-type specific in yeast: Filamentous C. albicans cells are more resistant to amphotericin B- and caspofungin-induced programmed cell death than their blastospore counterparts. Finally, our genetic data suggests that this phenomenon is mediated by a protective mechanism involving the yeast metacaspase, MCA1.
ISSN:2311-2638