LEOPARD: missing view completion for multi-timepoint omics data via representation disentanglement and temporal knowledge transfer
Abstract Longitudinal multi-view omics data offer unique insights into the temporal dynamics of individual-level physiology, which provides opportunities to advance personalized healthcare. However, the common occurrence of incomplete views makes extrapolation tasks difficult, and there is a lack of...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-58314-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Longitudinal multi-view omics data offer unique insights into the temporal dynamics of individual-level physiology, which provides opportunities to advance personalized healthcare. However, the common occurrence of incomplete views makes extrapolation tasks difficult, and there is a lack of tailored methods for this critical issue. Here, we introduce LEOPARD, an innovative approach specifically designed to complete missing views in multi-timepoint omics data. By disentangling longitudinal omics data into content and temporal representations, LEOPARD transfers the temporal knowledge to the omics-specific content, thereby completing missing views. The effectiveness of LEOPARD is validated on four real-world omics datasets constructed with data from the MGH COVID study and the KORA cohort, spanning periods from 3 days to 14 years. Compared to conventional imputation methods, such as missForest, PMM, GLMM, and cGAN, LEOPARD yields the most robust results across the benchmark datasets. LEOPARD-imputed data also achieve the highest agreement with observed data in our analyses for age-associated metabolites detection, estimated glomerular filtration rate-associated proteins identification, and chronic kidney disease prediction. Our work takes the first step toward a generalized treatment of missing views in longitudinal omics data, enabling comprehensive exploration of temporal dynamics and providing valuable insights into personalized healthcare. |
|---|---|
| ISSN: | 2041-1723 |