Integration of ordered porous materials for targeted three-component gas separation

Abstract Separation of multi-component mixtures in an energy-efficient manner has important practical impact in chemical industry but is highly challenging. Especially, targeted simultaneous removal of multiple impurities to purify the desired product in one-step separation process is an extremely d...

Full description

Saved in:
Bibliographic Details
Main Authors: Xue Jiang, Yu Wang, Hui Wang, Lu Cheng, Jian-Wei Cao, Jin-Bo Wang, Rong Yang, Dong-Hui Zhang, Run-Ye Zhang, Xiu-Bo Yang, Su-Hang Wang, Qiu-Yu Zhang, Kai-Jie Chen
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-55991-y
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Separation of multi-component mixtures in an energy-efficient manner has important practical impact in chemical industry but is highly challenging. Especially, targeted simultaneous removal of multiple impurities to purify the desired product in one-step separation process is an extremely difficult task. We introduced a pore integration strategy of modularizing ordered pore structures with specific functions for on-demand assembly to deal with complex multi-component separation systems, which are unattainable by each individual pore. As a proof of concept, two ultramicroporous nanocrystals (one for C2H2-selective and the other for CO2-selective) as the shell pores were respectively grown on a C2H6-selective ordered porous material as the core pore. Both of the respective pore-integrated materials show excellent one-step ethylene production performance in dynamic breakthrough separation experiments of C2H2/C2H4/C2H6 and CO2/C2H4/C2H6 gas mixture, and even better than that from traditional tandem-packing processes originated from the optimized mass/heat transfer. Thermodynamic and dynamic simulation results explained that the pre-designed pore modules can perform specific target functions independently in the pore-integrated materials.
ISSN:2041-1723