DEM-FEM Simulation of Double Compaction of Cu and Al Composite Metal Powders with Multiple Particle Sizes
In this paper, the analysis method which coupled discrete element method (DEM) and finite element method (FEM) is used to simulate the double compaction of random packing of Cu and Al composite powders with multiple particle sizes. Cu and Al composite powders with varying particle size ratios from 1...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Crystals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4352/15/6/526 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, the analysis method which coupled discrete element method (DEM) and finite element method (FEM) is used to simulate the double compaction of random packing of Cu and Al composite powders with multiple particle sizes. Cu and Al composite powders with varying particle size ratios from 1:2 to 1:5 were generated by DEM and then imported to MSC. Marc software (MSC.MARC2015 version) to construct FEM analysis. The effects of metal ratios, compaction pressure and size ratios on the relative density and von Mises stress of the compact were studied. The results show that the average relative density of the compact increases with the Al content, and the stress decreases. The stress in the Cu particle is particularly higher than that in the Al particle, mainly because the contact normal force of the Cu particle is nearly parallel at each contact surface. Therefore, the phenomenon of stress concentration is easier to occur within copper particles. When Al content is 30wt.%, the particle size difference enhances densification efficiency by up to 12.3%, as evidenced by an initial relative density increase from 0.7915 to 0.8047, primarily due to smaller Cu particles effectively filling interparticle voids. When the compaction pressure is fixed, the average relative density of the compact with the particle size ratio 1:5 is higher than the others, and the contact forces inside the particles significantly decrease. |
|---|---|
| ISSN: | 2073-4352 |