Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory
Absolute dielectronic recombination (DR) rate coefficients for sodium-like Fe ^15+ forming magnesium-like Fe ^14+ have been measured using the electron–ion merged-beams technique at the heavy ion storage ring Main Cooler Storage Ring, Lanzhou. The measured DR rate coefficients in the energy range fr...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2025-01-01
|
| Series: | The Astrophysical Journal Supplement Series |
| Subjects: | |
| Online Access: | https://doi.org/10.3847/1538-4365/adcc25 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849405030267879424 |
|---|---|
| author | H. K. Huang W. Q. Wen Z. K. Huang Y. Yuan C. Y. Zhang R. Si S. J. Wu C. Y. Chen S. Fritzsche S. Schippers H. B. Wang S. X. Wang C. Liu W. L. Ma X. P. Zhou M. Y. Wan L. J. Mao J. Li M. T. Tang K. Y. Yan Y. B. Zhou Y. J. Yuan J. C. Yang S. F. Zhang L. F. Zhu X. Ma |
| author_facet | H. K. Huang W. Q. Wen Z. K. Huang Y. Yuan C. Y. Zhang R. Si S. J. Wu C. Y. Chen S. Fritzsche S. Schippers H. B. Wang S. X. Wang C. Liu W. L. Ma X. P. Zhou M. Y. Wan L. J. Mao J. Li M. T. Tang K. Y. Yan Y. B. Zhou Y. J. Yuan J. C. Yang S. F. Zhang L. F. Zhu X. Ma |
| author_sort | H. K. Huang |
| collection | DOAJ |
| description | Absolute dielectronic recombination (DR) rate coefficients for sodium-like Fe ^15+ forming magnesium-like Fe ^14+ have been measured using the electron–ion merged-beams technique at the heavy ion storage ring Main Cooler Storage Ring, Lanzhou. The measured DR rate coefficients in the energy range from 0 to 90 eV cover all of the DR resonances due to 3 s → 3 p and 3 s → 3 d (Δ n = 0) transitions and part of the DR resonances from 3 s → 4 ℓ (Δ n = 1) core excitation. The experimental results are compared with theoretical calculations by using three independent state-of-the-art perturbative techniques: a multiconfiguration Breit–Pauli method using the AUTOSTRUCTURE code, a relativistic configuration interaction method using the Flexible Atomic Code and a multiconfiguration Dirac–Fock method using the Jena Atomic Calculator codes. Our theoretical results show excellent agreement with the experimental data in the energy range of 0–40 eV. However, in the energy range of 40–90 eV, a discrepancy is observed between the experiment and theory. Furthermore, temperature-dependent plasma recombination rate coefficients are derived from the measured DR rate coefficients over the temperature range of 10 ^3 –10 ^8 K and are compared with previously available results in the literature. Within the temperature ranges relevant to photoionized plasmas and collisionally ionized plasmas, our results show good agreement with the experimental result from S. Schippers et al. ( 2010 ), as well as with the theoretical data of M. F. Gu ( 2004 ) and Z. Altun et al.; however, the earlier theoretical data from M. Arnaud & J. Raymond and P. Mazzotta et al., which are based on LS-coupling calculations, significantly underestimate the plasma rate coefficients in the low-temperature range. The present results provide a benchmark data set for astrophysical modeling. |
| format | Article |
| id | doaj-art-e480e7fc42ea4b09a7508b1aae455d61 |
| institution | Kabale University |
| issn | 0067-0049 |
| language | English |
| publishDate | 2025-01-01 |
| publisher | IOP Publishing |
| record_format | Article |
| series | The Astrophysical Journal Supplement Series |
| spelling | doaj-art-e480e7fc42ea4b09a7508b1aae455d612025-08-20T03:36:47ZengIOP PublishingThe Astrophysical Journal Supplement Series0067-00492025-01-0127824410.3847/1538-4365/adcc25Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and TheoryH. K. Huang0W. Q. Wen1https://orcid.org/0000-0001-5266-3058Z. K. Huang2Y. Yuan3C. Y. Zhang4https://orcid.org/0000-0003-1935-6907R. Si5S. J. Wu6https://orcid.org/0000-0002-1106-1357C. Y. Chen7S. Fritzsche8S. Schippers9https://orcid.org/0000-0002-6166-7138H. B. Wang10S. X. Wang11C. Liu12W. L. Ma13X. P. Zhou14M. Y. Wan15L. J. Mao16J. Li17M. T. Tang18K. Y. Yan19Y. B. Zhou20Y. J. Yuan21https://orcid.org/0000-0002-1761-9040J. C. Yang22S. F. Zhang23L. F. Zhu24https://orcid.org/0000-0002-5771-0471X. Ma25https://orcid.org/0000-0001-9831-0565Institute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaDepartment of Physics, University of Strathclyde , Glasgow G4 0NG, UKShanghai EBIT Laboratory, Institute of Modern Physics, Fudan University , Shanghai 200433, People’s Republic of ChinaShanghai EBIT Laboratory, Institute of Modern Physics, Fudan University , Shanghai 200433, People’s Republic of ChinaShanghai EBIT Laboratory, Institute of Modern Physics, Fudan University , Shanghai 200433, People’s Republic of ChinaGSI Helmholtzzentrum für Schwerionenforschung GmbH , 64291 Darmstadt, Germany; Helmholtz-Institut Jena , 07743 Jena, Germany; Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena , 07743 Jena, GermanyI. Physikalisches Institut, Justus-Liebig-Universität Gießen , 35392 Giessen, Germany; Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , GSI Helmholtzzentrum für Schwerionenforschung, Campus Gießen, 35392 Giessen, GermanyInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaI. Physikalisches Institut, Justus-Liebig-Universität Gießen , 35392 Giessen, Germany; Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , GSI Helmholtzzentrum für Schwerionenforschung, Campus Gießen, 35392 Giessen, GermanyHefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China , 230026 Hefei, People’s Republic of ChinaHefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China , 230026 Hefei, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaHefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China , 230026 Hefei, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaAbsolute dielectronic recombination (DR) rate coefficients for sodium-like Fe ^15+ forming magnesium-like Fe ^14+ have been measured using the electron–ion merged-beams technique at the heavy ion storage ring Main Cooler Storage Ring, Lanzhou. The measured DR rate coefficients in the energy range from 0 to 90 eV cover all of the DR resonances due to 3 s → 3 p and 3 s → 3 d (Δ n = 0) transitions and part of the DR resonances from 3 s → 4 ℓ (Δ n = 1) core excitation. The experimental results are compared with theoretical calculations by using three independent state-of-the-art perturbative techniques: a multiconfiguration Breit–Pauli method using the AUTOSTRUCTURE code, a relativistic configuration interaction method using the Flexible Atomic Code and a multiconfiguration Dirac–Fock method using the Jena Atomic Calculator codes. Our theoretical results show excellent agreement with the experimental data in the energy range of 0–40 eV. However, in the energy range of 40–90 eV, a discrepancy is observed between the experiment and theory. Furthermore, temperature-dependent plasma recombination rate coefficients are derived from the measured DR rate coefficients over the temperature range of 10 ^3 –10 ^8 K and are compared with previously available results in the literature. Within the temperature ranges relevant to photoionized plasmas and collisionally ionized plasmas, our results show good agreement with the experimental result from S. Schippers et al. ( 2010 ), as well as with the theoretical data of M. F. Gu ( 2004 ) and Z. Altun et al.; however, the earlier theoretical data from M. Arnaud & J. Raymond and P. Mazzotta et al., which are based on LS-coupling calculations, significantly underestimate the plasma rate coefficients in the low-temperature range. The present results provide a benchmark data set for astrophysical modeling.https://doi.org/10.3847/1538-4365/adcc25Atomic data benchmarkingDielectronic recombinationLaboratory astrophysics |
| spellingShingle | H. K. Huang W. Q. Wen Z. K. Huang Y. Yuan C. Y. Zhang R. Si S. J. Wu C. Y. Chen S. Fritzsche S. Schippers H. B. Wang S. X. Wang C. Liu W. L. Ma X. P. Zhou M. Y. Wan L. J. Mao J. Li M. T. Tang K. Y. Yan Y. B. Zhou Y. J. Yuan J. C. Yang S. F. Zhang L. F. Zhu X. Ma Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory The Astrophysical Journal Supplement Series Atomic data benchmarking Dielectronic recombination Laboratory astrophysics |
| title | Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory |
| title_full | Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory |
| title_fullStr | Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory |
| title_full_unstemmed | Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory |
| title_short | Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory |
| title_sort | absolute rate coefficients for dielectronic recombination of sodium like iron ions experiment and theory |
| topic | Atomic data benchmarking Dielectronic recombination Laboratory astrophysics |
| url | https://doi.org/10.3847/1538-4365/adcc25 |
| work_keys_str_mv | AT hkhuang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT wqwen absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT zkhuang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT yyuan absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT cyzhang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT rsi absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT sjwu absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT cychen absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT sfritzsche absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT sschippers absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT hbwang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT sxwang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT cliu absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT wlma absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT xpzhou absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT mywan absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT ljmao absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT jli absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT mttang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT kyyan absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT ybzhou absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT yjyuan absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT jcyang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT sfzhang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT lfzhu absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory AT xma absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory |