Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory

Absolute dielectronic recombination (DR) rate coefficients for sodium-like Fe ^15+ forming magnesium-like Fe ^14+ have been measured using the electron–ion merged-beams technique at the heavy ion storage ring Main Cooler Storage Ring, Lanzhou. The measured DR rate coefficients in the energy range fr...

Full description

Saved in:
Bibliographic Details
Main Authors: H. K. Huang, W. Q. Wen, Z. K. Huang, Y. Yuan, C. Y. Zhang, R. Si, S. J. Wu, C. Y. Chen, S. Fritzsche, S. Schippers, H. B. Wang, S. X. Wang, C. Liu, W. L. Ma, X. P. Zhou, M. Y. Wan, L. J. Mao, J. Li, M. T. Tang, K. Y. Yan, Y. B. Zhou, Y. J. Yuan, J. C. Yang, S. F. Zhang, L. F. Zhu, X. Ma
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal Supplement Series
Subjects:
Online Access:https://doi.org/10.3847/1538-4365/adcc25
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849405030267879424
author H. K. Huang
W. Q. Wen
Z. K. Huang
Y. Yuan
C. Y. Zhang
R. Si
S. J. Wu
C. Y. Chen
S. Fritzsche
S. Schippers
H. B. Wang
S. X. Wang
C. Liu
W. L. Ma
X. P. Zhou
M. Y. Wan
L. J. Mao
J. Li
M. T. Tang
K. Y. Yan
Y. B. Zhou
Y. J. Yuan
J. C. Yang
S. F. Zhang
L. F. Zhu
X. Ma
author_facet H. K. Huang
W. Q. Wen
Z. K. Huang
Y. Yuan
C. Y. Zhang
R. Si
S. J. Wu
C. Y. Chen
S. Fritzsche
S. Schippers
H. B. Wang
S. X. Wang
C. Liu
W. L. Ma
X. P. Zhou
M. Y. Wan
L. J. Mao
J. Li
M. T. Tang
K. Y. Yan
Y. B. Zhou
Y. J. Yuan
J. C. Yang
S. F. Zhang
L. F. Zhu
X. Ma
author_sort H. K. Huang
collection DOAJ
description Absolute dielectronic recombination (DR) rate coefficients for sodium-like Fe ^15+ forming magnesium-like Fe ^14+ have been measured using the electron–ion merged-beams technique at the heavy ion storage ring Main Cooler Storage Ring, Lanzhou. The measured DR rate coefficients in the energy range from 0 to 90 eV cover all of the DR resonances due to 3 s  → 3 p and 3 s  → 3 d (Δ n  = 0) transitions and part of the DR resonances from 3 s  → 4 ℓ (Δ n  = 1) core excitation. The experimental results are compared with theoretical calculations by using three independent state-of-the-art perturbative techniques: a multiconfiguration Breit–Pauli method using the AUTOSTRUCTURE code, a relativistic configuration interaction method using the Flexible Atomic Code and a multiconfiguration Dirac–Fock method using the Jena Atomic Calculator codes. Our theoretical results show excellent agreement with the experimental data in the energy range of 0–40 eV. However, in the energy range of 40–90 eV, a discrepancy is observed between the experiment and theory. Furthermore, temperature-dependent plasma recombination rate coefficients are derived from the measured DR rate coefficients over the temperature range of 10 ^3 –10 ^8 K and are compared with previously available results in the literature. Within the temperature ranges relevant to photoionized plasmas and collisionally ionized plasmas, our results show good agreement with the experimental result from S. Schippers et al. ( 2010 ), as well as with the theoretical data of M. F. Gu ( 2004 ) and Z. Altun et al.; however, the earlier theoretical data from M. Arnaud & J. Raymond and P. Mazzotta et al., which are based on LS-coupling calculations, significantly underestimate the plasma rate coefficients in the low-temperature range. The present results provide a benchmark data set for astrophysical modeling.
format Article
id doaj-art-e480e7fc42ea4b09a7508b1aae455d61
institution Kabale University
issn 0067-0049
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal Supplement Series
spelling doaj-art-e480e7fc42ea4b09a7508b1aae455d612025-08-20T03:36:47ZengIOP PublishingThe Astrophysical Journal Supplement Series0067-00492025-01-0127824410.3847/1538-4365/adcc25Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and TheoryH. K. Huang0W. Q. Wen1https://orcid.org/0000-0001-5266-3058Z. K. Huang2Y. Yuan3C. Y. Zhang4https://orcid.org/0000-0003-1935-6907R. Si5S. J. Wu6https://orcid.org/0000-0002-1106-1357C. Y. Chen7S. Fritzsche8S. Schippers9https://orcid.org/0000-0002-6166-7138H. B. Wang10S. X. Wang11C. Liu12W. L. Ma13X. P. Zhou14M. Y. Wan15L. J. Mao16J. Li17M. T. Tang18K. Y. Yan19Y. B. Zhou20Y. J. Yuan21https://orcid.org/0000-0002-1761-9040J. C. Yang22S. F. Zhang23L. F. Zhu24https://orcid.org/0000-0002-5771-0471X. Ma25https://orcid.org/0000-0001-9831-0565Institute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaDepartment of Physics, University of Strathclyde , Glasgow G4 0NG, UKShanghai EBIT Laboratory, Institute of Modern Physics, Fudan University , Shanghai 200433, People’s Republic of ChinaShanghai EBIT Laboratory, Institute of Modern Physics, Fudan University , Shanghai 200433, People’s Republic of ChinaShanghai EBIT Laboratory, Institute of Modern Physics, Fudan University , Shanghai 200433, People’s Republic of ChinaGSI Helmholtzzentrum für Schwerionenforschung GmbH , 64291 Darmstadt, Germany; Helmholtz-Institut Jena , 07743 Jena, Germany; Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena , 07743 Jena, GermanyI. Physikalisches Institut, Justus-Liebig-Universität Gießen , 35392 Giessen, Germany; Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , GSI Helmholtzzentrum für Schwerionenforschung, Campus Gießen, 35392 Giessen, GermanyInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaI. Physikalisches Institut, Justus-Liebig-Universität Gießen , 35392 Giessen, Germany; Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , GSI Helmholtzzentrum für Schwerionenforschung, Campus Gießen, 35392 Giessen, GermanyHefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China , 230026 Hefei, People’s Republic of ChinaHefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China , 230026 Hefei, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cnInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaHefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China , 230026 Hefei, People’s Republic of ChinaInstitute of Modern Physics , Chinese Academy of Sciences, 730000 Lanzhou, People’s Republic of China ; weiqiangwen@impcas.ac.cn, x.ma@impcas.ac.cn; University of Chinese Academy of Sciences , 100049 Beijing, People’s Republic of ChinaAbsolute dielectronic recombination (DR) rate coefficients for sodium-like Fe ^15+ forming magnesium-like Fe ^14+ have been measured using the electron–ion merged-beams technique at the heavy ion storage ring Main Cooler Storage Ring, Lanzhou. The measured DR rate coefficients in the energy range from 0 to 90 eV cover all of the DR resonances due to 3 s  → 3 p and 3 s  → 3 d (Δ n  = 0) transitions and part of the DR resonances from 3 s  → 4 ℓ (Δ n  = 1) core excitation. The experimental results are compared with theoretical calculations by using three independent state-of-the-art perturbative techniques: a multiconfiguration Breit–Pauli method using the AUTOSTRUCTURE code, a relativistic configuration interaction method using the Flexible Atomic Code and a multiconfiguration Dirac–Fock method using the Jena Atomic Calculator codes. Our theoretical results show excellent agreement with the experimental data in the energy range of 0–40 eV. However, in the energy range of 40–90 eV, a discrepancy is observed between the experiment and theory. Furthermore, temperature-dependent plasma recombination rate coefficients are derived from the measured DR rate coefficients over the temperature range of 10 ^3 –10 ^8 K and are compared with previously available results in the literature. Within the temperature ranges relevant to photoionized plasmas and collisionally ionized plasmas, our results show good agreement with the experimental result from S. Schippers et al. ( 2010 ), as well as with the theoretical data of M. F. Gu ( 2004 ) and Z. Altun et al.; however, the earlier theoretical data from M. Arnaud & J. Raymond and P. Mazzotta et al., which are based on LS-coupling calculations, significantly underestimate the plasma rate coefficients in the low-temperature range. The present results provide a benchmark data set for astrophysical modeling.https://doi.org/10.3847/1538-4365/adcc25Atomic data benchmarkingDielectronic recombinationLaboratory astrophysics
spellingShingle H. K. Huang
W. Q. Wen
Z. K. Huang
Y. Yuan
C. Y. Zhang
R. Si
S. J. Wu
C. Y. Chen
S. Fritzsche
S. Schippers
H. B. Wang
S. X. Wang
C. Liu
W. L. Ma
X. P. Zhou
M. Y. Wan
L. J. Mao
J. Li
M. T. Tang
K. Y. Yan
Y. B. Zhou
Y. J. Yuan
J. C. Yang
S. F. Zhang
L. F. Zhu
X. Ma
Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory
The Astrophysical Journal Supplement Series
Atomic data benchmarking
Dielectronic recombination
Laboratory astrophysics
title Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory
title_full Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory
title_fullStr Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory
title_full_unstemmed Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory
title_short Absolute Rate Coefficients for Dielectronic Recombination of Sodium-like Iron Ions: Experiment and Theory
title_sort absolute rate coefficients for dielectronic recombination of sodium like iron ions experiment and theory
topic Atomic data benchmarking
Dielectronic recombination
Laboratory astrophysics
url https://doi.org/10.3847/1538-4365/adcc25
work_keys_str_mv AT hkhuang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT wqwen absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT zkhuang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT yyuan absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT cyzhang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT rsi absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT sjwu absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT cychen absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT sfritzsche absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT sschippers absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT hbwang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT sxwang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT cliu absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT wlma absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT xpzhou absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT mywan absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT ljmao absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT jli absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT mttang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT kyyan absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT ybzhou absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT yjyuan absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT jcyang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT sfzhang absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT lfzhu absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory
AT xma absoluteratecoefficientsfordielectronicrecombinationofsodiumlikeironionsexperimentandtheory