A Context-Aware Doorway Alignment and Depth Estimation Algorithm for Assistive Wheelchairs

Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detect...

Full description

Saved in:
Bibliographic Details
Main Authors: Shanelle Tennekoon, Nushara Wedasingha, Anuradhi Welhenge, Nimsiri Abhayasinghe, Iain Murray
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Computers
Subjects:
Online Access:https://www.mdpi.com/2073-431X/14/7/284
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detection. This study presents the algorithmic development of a lightweight, vision-based doorway detection and alignment module with contextual awareness. It integrates channel and spatial attention, semantic feature fusion, unsupervised depth estimation, and doorway alignment that offers real-time navigational guidance to the wheelchairs control system. The model achieved a mean average precision of 95.8% and a F1 score of 93%, while maintaining low computational demands suitable for future deployment on embedded systems. By eliminating the need for depth sensors and enabling contextual awareness, this study offers a robust solution to improve indoor mobility and deliver actionable feedback to support safe and independent doorway traversal for wheelchair users.
ISSN:2073-431X