Hybrid Model for Motorway EV Fast-Charging Demand Analysis Based on Traffic Volume

The expected growth of electric vehicle (EV) usage will not only increase the energy demand but also bring the requirement to provide the necessary electrical infrastructure to handle the load. While charging infrastructure is becoming increasingly present in urban areas, special attention is requir...

Full description

Saved in:
Bibliographic Details
Main Authors: Bojan Rupnik, Yuhong Wang, Tomaž Kramberger
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Systems
Subjects:
Online Access:https://www.mdpi.com/2079-8954/13/4/272
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The expected growth of electric vehicle (EV) usage will not only increase the energy demand but also bring the requirement to provide the necessary electrical infrastructure to handle the load. While charging infrastructure is becoming increasingly present in urban areas, special attention is required for transit traffic, not just for passengers but also for freight transport. Differences in the nature of battery charging compared to that of classical refueling require careful planning in order to provide a resilient electrical infrastructure that will supply enough energy at critical locations during peak hours. This paper presents a hybrid simulation model for analyzing fast-charging demand based on traffic flow, projected EV adoption, battery characteristics, and environmental conditions. The model integrates a probabilistic model for evaluating the charging requirements based on traffic flows with a discrete-event simulation (DES) framework to analyze charger utilization, waiting queues, and energy demand. The presented case of traffic flow on Slovenian motorways explored the expected power demands at various seasonal traffic intensities. The findings provide valuable insight for planning the charging infrastructure, the electrical grid, and also the layout by anticipating the number of vehicles seeking charging services. The modular design of the model allowed replacing key parameters with different traffic projections, supporting a robust scenario analysis and adaptive infrastructure planning. Replacing the parameters with real-time data opens the path for integration into a digital twin framework of individual EV charging hubs, providing the basis for development of an EV charging hub network digital twin.
ISSN:2079-8954