Preheating Modeling of Forming Region and Design of Electrode Structure During Integral Electric Hot Incremental Forming

Recently, integral electric hot incremental forming technology has been proposed to form hard-to-form sheet metals and to eliminate some defects obtained through the local heating method via current, such as inhomogeneous temperature distribution, arc burns for the sheet and the tool, unsuitability...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhengfang Li, Lijia Liu, Jiangpeng Song, Shuang Wu, Li Liu, Xinhao Zhai
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/9/698
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, integral electric hot incremental forming technology has been proposed to form hard-to-form sheet metals and to eliminate some defects obtained through the local heating method via current, such as inhomogeneous temperature distribution, arc burns for the sheet and the tool, unsuitability for multistage forming, etc. However, the simulation of integral electric hot incremental forming involves coupled electro-thermal-mechanical analysis, which is difficult through existing simulation software. Meanwhile, the effect of the electrode structure on temperature distribution is not clear; therefore, a preheating flux model for Joule heat was proposed to simulate the temperature distribution of Ti-6Al-4V titanium alloy sheet in this work, which could simplify the coupled electro-thermal-mechanical analysis to the coupled thermal–mechanical simulation. Meanwhile, the effect of the electrode section and length on the temperature distribution was analyzed in detail, and then a design criterion for the electrode length was obtained during integral electric hot incremental forming.
ISSN:2079-4991