A Two-Stage Optimization Framework for UAV Fleet Sizing and Task Allocation in Emergency Logistics Using the GWO and CBBA

The joint optimization of fleet size and task allocation presents a critical challenge in deploying Unmanned Aerial Vehicles (UAVs) for time-sensitive missions such as emergency logistics. Conventional approaches often rely on pre-determined fleet sizes or computationally intensive centralized optim...

Full description

Saved in:
Bibliographic Details
Main Authors: Yongchao Zhang, Wei Xu, Helin Ye, Zhuoyong Shi
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/9/7/501
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The joint optimization of fleet size and task allocation presents a critical challenge in deploying Unmanned Aerial Vehicles (UAVs) for time-sensitive missions such as emergency logistics. Conventional approaches often rely on pre-determined fleet sizes or computationally intensive centralized optimizers, which can lead to suboptimal performance. To address this gap, this paper proposes a novel two-stage hierarchical framework that integrates the Grey Wolf Optimizer (GWO) with the Consensus-Based Bundle Algorithm (CBBA). At the strategic level, the GWO determines the optimal number of UAVs by minimizing a comprehensive cost function that balances mission efficiency and operational costs. Subsequently, at the tactical level, the CBBA performs decentralized, real-time task allocation for the optimally sized fleet. We validated our GWO-CBBA framework through extensive simulations against three benchmarks: a standard CBBA with a fixed fleet, a centralized Particle Swarm Optimization (PSO) approach, and a Greedy Heuristic algorithm. The results are compelling: our framework demonstrates superior performance across all key metrics, reducing the overall scheduling cost by 13.2–36.5%, minimizing UAV mileage cost and significantly decreasing total task waiting time. This work provides a robust and efficient solution that effectively balances operational costs with service quality for dynamic multi-UAV scheduling problems.
ISSN:2504-446X