MineObserver: A Deep Learning Framework for Assessing Natural Language Descriptions of Minecraft Imagery

This paper introduces a novel approach for learning natural language descriptions of scenery in Minecraft. We apply techniques from Computer Vision and Natural Language Processing to create an AI framework called MineObserver for assessing the accuracy of learner-generated descriptions of science-re...

Full description

Saved in:
Bibliographic Details
Main Authors: Jay Mahajan, Samuel Hum, Jeff Ginger, H. Chad Lane
Format: Article
Language:English
Published: LibraryPress@UF 2022-05-01
Series:Proceedings of the International Florida Artificial Intelligence Research Society Conference
Subjects:
Online Access:https://journals.flvc.org/FLAIRS/article/view/130729
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces a novel approach for learning natural language descriptions of scenery in Minecraft. We apply techniques from Computer Vision and Natural Language Processing to create an AI framework called MineObserver for assessing the accuracy of learner-generated descriptions of science-related images. The ultimate purpose of the system is to automatically assess the accuracy of learner observations, written in natural language, made during science learning activities that take place in Minecraft. Eventually, MineObserver will be used as part of a pedagogical agent framework for providing in-game support for learning. Preliminary results are mixed, but promising with approximately 62% of images in our test set being properly classified by our image captioning approach. Broadly, our work suggests that computer vision techniques work as expected in Minecraft and can serve as a basis for assessing learner observations.
ISSN:2334-0754
2334-0762