A plastic analysis of Griffith crack problem in 1D hexagonal piezoelectric quasicrystals
Abstract The elastic–plastic fracture mechanics of one-dimensional (1D) hexagonal piezoelectric quasicrystals (QCs) Griffith crack under a small-scale yielding is studied. Due to the properties of this material, the atomic cohesive force zone of the phonon field is the smallest. Based on the theory...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-03892-x |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849687910486376448 |
|---|---|
| author | Jing Zhang Guanting Liu Haitao Liao |
| author_facet | Jing Zhang Guanting Liu Haitao Liao |
| author_sort | Jing Zhang |
| collection | DOAJ |
| description | Abstract The elastic–plastic fracture mechanics of one-dimensional (1D) hexagonal piezoelectric quasicrystals (QCs) Griffith crack under a small-scale yielding is studied. Due to the properties of this material, the atomic cohesive force zone of the phonon field is the smallest. Based on the theory of distributed dislocation, the mechanical and electrice coupling model for the elastic–plastic fracture mechanics of 1D hexagonal piezoelectric QCs Griffith crack under a small yield range is established for the first time. The crack opening is arrested by prescribing the cohesive loads of yield point phonon field, phason field and electric field over the phonon field atomic cohesive force zone, the phason field atomic cohesive force zone and saturation zone rims, respectively. Without loss of generality, two cases are considered. Using Dugdale method, the corresponding size of atomic cohesive force zone is obtained. By using Fourier transform and the integral equation method, the closed analytical expressions of phonon field crack opening displacement (COD), phason field COD, crack opening potential drop (COP) and J-integral are obtained. Numerical analysis results show that crack arrest is possible in 1D hexagonal piezoelectric QCs under small-scale yielding, which provides a theoretical basis for the application of QCs materials. |
| format | Article |
| id | doaj-art-e37166fa58b149a4bdb2baa863549d4d |
| institution | DOAJ |
| issn | 2045-2322 |
| language | English |
| publishDate | 2025-05-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Scientific Reports |
| spelling | doaj-art-e37166fa58b149a4bdb2baa863549d4d2025-08-20T03:22:12ZengNature PortfolioScientific Reports2045-23222025-05-0115111510.1038/s41598-025-03892-xA plastic analysis of Griffith crack problem in 1D hexagonal piezoelectric quasicrystalsJing Zhang0Guanting Liu1Haitao Liao2Institute of Advanced Structure Technology, Beijing Institute of TechnologyCollege of Mathematics Science, Inner Mongolia Normal UniversityInstitute of Advanced Structure Technology, Beijing Institute of TechnologyAbstract The elastic–plastic fracture mechanics of one-dimensional (1D) hexagonal piezoelectric quasicrystals (QCs) Griffith crack under a small-scale yielding is studied. Due to the properties of this material, the atomic cohesive force zone of the phonon field is the smallest. Based on the theory of distributed dislocation, the mechanical and electrice coupling model for the elastic–plastic fracture mechanics of 1D hexagonal piezoelectric QCs Griffith crack under a small yield range is established for the first time. The crack opening is arrested by prescribing the cohesive loads of yield point phonon field, phason field and electric field over the phonon field atomic cohesive force zone, the phason field atomic cohesive force zone and saturation zone rims, respectively. Without loss of generality, two cases are considered. Using Dugdale method, the corresponding size of atomic cohesive force zone is obtained. By using Fourier transform and the integral equation method, the closed analytical expressions of phonon field crack opening displacement (COD), phason field COD, crack opening potential drop (COP) and J-integral are obtained. Numerical analysis results show that crack arrest is possible in 1D hexagonal piezoelectric QCs under small-scale yielding, which provides a theoretical basis for the application of QCs materials.https://doi.org/10.1038/s41598-025-03892-xOne-dimensional hexagonal piezoelectric quasicrystalsElastic–plasticCrack opening displacementJ-integralSmall-scale yielding |
| spellingShingle | Jing Zhang Guanting Liu Haitao Liao A plastic analysis of Griffith crack problem in 1D hexagonal piezoelectric quasicrystals Scientific Reports One-dimensional hexagonal piezoelectric quasicrystals Elastic–plastic Crack opening displacement J-integral Small-scale yielding |
| title | A plastic analysis of Griffith crack problem in 1D hexagonal piezoelectric quasicrystals |
| title_full | A plastic analysis of Griffith crack problem in 1D hexagonal piezoelectric quasicrystals |
| title_fullStr | A plastic analysis of Griffith crack problem in 1D hexagonal piezoelectric quasicrystals |
| title_full_unstemmed | A plastic analysis of Griffith crack problem in 1D hexagonal piezoelectric quasicrystals |
| title_short | A plastic analysis of Griffith crack problem in 1D hexagonal piezoelectric quasicrystals |
| title_sort | plastic analysis of griffith crack problem in 1d hexagonal piezoelectric quasicrystals |
| topic | One-dimensional hexagonal piezoelectric quasicrystals Elastic–plastic Crack opening displacement J-integral Small-scale yielding |
| url | https://doi.org/10.1038/s41598-025-03892-x |
| work_keys_str_mv | AT jingzhang aplasticanalysisofgriffithcrackproblemin1dhexagonalpiezoelectricquasicrystals AT guantingliu aplasticanalysisofgriffithcrackproblemin1dhexagonalpiezoelectricquasicrystals AT haitaoliao aplasticanalysisofgriffithcrackproblemin1dhexagonalpiezoelectricquasicrystals AT jingzhang plasticanalysisofgriffithcrackproblemin1dhexagonalpiezoelectricquasicrystals AT guantingliu plasticanalysisofgriffithcrackproblemin1dhexagonalpiezoelectricquasicrystals AT haitaoliao plasticanalysisofgriffithcrackproblemin1dhexagonalpiezoelectricquasicrystals |